...
首页> 外文期刊>Nanoscale >Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions
【24h】

Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions

机译:在催化剂的最新进展,电解质和电极氮减排工程在环境条件下反应

获取原文
获取原文并翻译 | 示例

摘要

With the conventional Haber-Bosch NH3 synthesis in industry requiring harsh pressures and high temperatures, artificial N-2 fixation has been long sought after. The electrochemical nitrogen reduction reaction (NRR) could offer a solution by allowing NH3 production under ambient conditions. In this review, important recent findings on theoretical calculations and experimental exploration on the NRR at room temperature are systematically reviewed. Firstly, we discuss the mechanism of electrochemical heterogeneous catalysis for the NRR. The NRR is a multi-proton coupled electron transfer (PCET) process which implies that in addition to catalyst surface size effects, ligand and strain effects will also significantly influence the binding energy of the adsorbed N atoms, reaction intermediates and product species. Electrocatalysts including metals, metal nitrides, metal oxides and carbon-based materials will also be discussed at length. A linear scaling relationship seems to limit the NRR activity on most metals and metal oxides. Metal nitrides, however, follow the Mars-van Krevelen (MvK) mechanism which usually shows a lower potential energy barrier compared to the associative mechanism. Carbon-based materials and some single atom catalysts exhibit improved activity and selectivity due to ligand effects. Thus, electrolytes containing a proton donor might play a crucial role in the NRR. The limiting concentration of proton donors and the rate of proton transport to the active sites might be effective factors in boosting the selectivity of the NRR. Specifically, ionic liquids with high N-2 solubility demonstrate much larger faradaic efficiency and would be promising candidates for use in NRR processes. Inspired by the characteristics of PCET, four strategies of electrode engineering were introduced including limiting protons, tuning the electron transport, modifying the electrode structure facilitating mass transport, and completely changing the NRR mechanism inspired by bio-nitrogenase and Li mediated N-2 fixation.
机译:与传统Haber-Bosch氨合成行业要求苛刻压力和高温度、人工n -固定漫长的追求。还原反应(NRR)可以提供一个解决方案通过允许NH3环境下生产条件。在理论计算和结果实验探索NRR在房间系统地回顾了温度。我们讨论电化学的机制NRR多相催化。multi-proton耦合电子转移(PCET)这意味着除了过程催化剂表面大小的影响,配体和压力效果也会明显影响吸附N原子的结合能,反应中间体和产品种类。Electrocatalysts包括金属、金属氮化物、金属氧化物和碳基材料还将讨论长度。似乎限制NRR比例关系活动在大多数金属和金属氧化物。然而,氮化物遵循Mars-van Krevelen(MvK)机制通常显示较低潜在的能量势垒相比关联机制。一些单原子催化剂表现出改善由于配体活性和选择性的影响。因此,包含一个质子供体的电解质NRR可能会发挥极其重要的作用。质子捐赠者和极限浓度质子的速度传输到活动网站可能是有效的因素在增加NRR的选择性。液体-高溶解度演示更大的感应电流的效率,会有前途的候选人在NRR使用流程。PCET的特点,四个策略电极工程介绍了包括限制质子,调优电子传递,修改电极结构促进NRR质量传输,完全改变机制受bio-nitrogenase和李介导的n -固定。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号