首页> 外文期刊>Applied Soft Computing >Optimization methodology based on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermentation process
【24h】

Optimization methodology based on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermentation process

机译:基于神经网络和自适应差分进化算法的有氧发酵工艺优化方法

获取原文
获取原文并翻译 | 示例
           

摘要

The determination of the optimal neural network topology is an important aspect when using neural models. Due to the lack of consistent rules, this is a difficult problem, which is solved in this paper using an evolutionary algorithm namely Differential Evolution. An improved, simple, and flexible self-adaptive variant of Differential Evolution algorithm is proposed and tested. The algorithm included two initialization strategies (normal distribution and normal distribution combined with the opposition based principle) and a modified mutation principle. Because the methodology contains new elements, a specific name has been assigned, SADE-NN-1. In order to determine the most influential inputs of the models, a sensitivity analysis was applied. The case study considered in this work refer to the oxygen mass transfer coefficient in stirred bioreactors in the presence of n-dodecane as oxygen vector. The oxygen transfer in the fermentation broths has a significant influence on the growth of cultivated microorganism, the accurate modeling of this process being an important problem that has to be solved in order to optimize the aerobic fermentation process. The neural networks predicted the mass transfer coefficients with high accuracy, which indicates that the proposed methodology had a good performance. The same methodology, with a few modifications, and with the best neural network models, was used for determining the optimal conditions for which the mass transfer coefficient is maximized. A short review of the differential evolution methodology is realized in the first part of this article, presenting the main characteristics and variants, with advantages and disadvantages, and fitting in the modifications proposed within the existing directions of research.
机译:使用神经模型时,确定最佳神经网络拓扑是一个重要方面。由于缺乏一致的规则,这是一个难题,本文使用一种称为差分进化的进化算法来解决。提出并测试了一种改进,简单,灵活的差分进化算法自适应变体。该算法包括两种初始化策略(正态分布和正态分布结合基于对立的原理)和一种改进的变异原理。由于该方法包含新元素,因此已指定了特定名称SADE-NN-1。为了确定模型中最具影响力的输入,应用了敏感性分析。在这项工作中考虑的案例研究涉及在存在正十二烷作为氧气载体的情况下搅拌的生物反应器中的氧气传质系数。发酵液中的氧气转移对培养的微生物的生长具有重要影响,此过程的精确建模是必须优化优化好氧发酵过程的重要问题。神经网络预测了传质系数,具有较高的准确性,表明所提出的方法具有良好的性能。使用相同的方法,进行一些修改,并使用最佳的神经网络模型来确定传质系数最大的最佳条件。本文第一部分简要介绍了差分进化方法,介绍了主要特征和变体,各有优缺点,并适合现有研究方向中提出的修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号