...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming
【24h】

TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming

机译:TIME-GCM研究电离层赤道垂直漂移变化在2006年平流层突然变暖

获取原文
获取原文并翻译 | 示例
           

摘要

This modeling study quantifies the daytime low-latitude vertical E × B drift changes in the longitudinal wave number 1 (wn1) to wn4 during the major extended January 2006 stratospheric sudden warming (SSW) period as simulated by the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM), and attributes the drift changes to specific tides and planetary waves (PWs). The largest drift amplitude change (approximately 5 m/s) is seen in wn1 with a strong temporal correlation to the SSW. The wn1 drift is primarily caused by the semidiurnal westward propagating tide with zonal wave number 1 (SW1), and secondarily by a stationary planetary wave with zonal wave number 1 (PW1). SW1 is generated by the nonlinear interaction of PW1 and the migrating semidiurnal tide (SW2) at high latitude around 90–100 km. The simulations suggest that the E region PW1 around 100–130 km at the different latitudes has different origins: at high latitudes, the PW1 is related to the original stratospheric PW1; at midlatitudes, the model indicates PW1 is due to the nonlinear interaction of SW1 and SW2 around 95–105 km; and at low latitudes, the PW1 might be caused by the nonlinear interaction between DE2 and DE3. The time evolution of the simulated wn4 in the vertical E × B drift amplitude shows no temporal correlation with the SSW. The wn4 in the low-latitude vertical drift is attributed to the diurnal eastward propagating tide with zonal wave number 3 (DE3), and the contributions from SE2, TE1, and PW4 are negligible.
机译:这个建模研究量化白天低纬度垂直E×B漂移的变化纵向波数1 (wn1)期间wn42006年1月的主要扩展平流层突然变暖(f)模拟的时期国家大气研究中心thermosphere-ionosphere-mesosphere电动力学环流模式(TIME-GCM)和属性变化特定的潮汐和行星波(PWs)。最大偏移振幅变化(约5m / s)是在wn1强烈的时间相关量。主要由半日西造成的传播潮流与纬向波数1 (SW1),其次,静止的行星波纬向波数1 (PW1)。PW1和非线性相互作用的在高纬度迁移半日潮(SW2)在90 - 100公里。E地区PW1 100 - 130公里左右不同的纬度有不同的起源:在高纬度地区,PW1有关原始平流层PW1;表明PW1是由于非线性模型SW1交互和SW2约95 - 105公里;在低纬度地区,PW1可能造成的德之间的非线性相互作用和DE3。时间演化的模拟wn4垂直E×B漂移幅度没有时间量的相关性。低纬度垂直漂移是由于日东与纬向波传播潮流3号(DE3),并从SE2的贡献,TE1, PW4可以忽略不计。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号