...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels
【24h】

Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels

机译:并联微通道中集流管设计和进/出口配置对流量分布不均的实验和数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The present study concentrates on the effects of header design on flow mal-distribution in a micro-channel (25 channels) heat sink. Experiments have been conducted to investigate the effect of header shape (rectangular and triangular) on flow mal-distribution and the manufacturing tolerances along the channel length and between the channels. Detailed numerical simulations have been performed for different geometric configurations by varying the header shape (rectangular, trapezoidal and triangular), header size and locations of inlet and outlet (I, C, V, Z and U-type) arrangements. Predicted results clearly illustrate that flow separation and recirculation bubbles occurring in the inlet header are primary responsible for the flow mal-distribution between the channels. To quantify the mal-distribution through the channels, the channel-wise flow rate predicted at the channel inlets and the mal-distribution factor has been compared for all the cases investigated in the study. Results highlight that flow distribution is better for C-type and poor for V-type flow configurations. An I-type flow arrangement has a symmetrical flow distribution pattern with a large pressure drop and U-type flow has a minimal pressure drop. It is observed from the header shape analysis that a triangular inlet header provides better flow distribution; whereas, for the case of an outlet header, the trapezoidal header provides uniform flow distribution. Predictions show that mal-distribution decreases with header width and for the range of header depths considered in the study, there exist an optimum header depth (7 mm) in which the flow distribution, pressure drop, and mal-distribution factor is better. Predicted results agree well with the measured experimental data.
机译:本研究集中于集管设计对微通道(25通道)散热器中流量分布不均的影响。已经进行了实验,以研究集管形状(矩形和三角形)对流量分布不均的影响以及沿通道长度和通道之间的制造公差。通过改变集管的形状(矩形,梯形和三角形),集管的大小以及入口和出口的位置(I,C,V,Z和U型),对不同的几何构造进行了详细的数值模拟。预测结果清楚地表明,进口集管中发生的流分离和再循环气泡是造成通道之间流量分配不均的主要原因。为了量化通过通道的不均匀分布,在研究中对所有案例进行了比较,比较了通道入口处预测的通道方向流速和不均匀分布因子。结果表明,对于C型而言,流量分配更好,而对于V型而言,流量分配较差。 I型流量装置具有对称的流量分布模式,压力降大,而U型流量则具有最小的压降。从集管形状分析中可以看出,三角形的入口集管可提供更好的流量分配;而对于出口集管,梯形集管可提供均匀的流量分配。预测表明,分布不均会随着集管宽度的增加而减小,并且在研究中考虑的集管深度范围内,存在一个最佳集管深度(7 mm),其中流量分布,压降和分布不均系数更好。预测结果与实测数据吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号