首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >A direct examination of the dynamics of dipolarization fronts using MMS
【24h】

A direct examination of the dynamics of dipolarization fronts using MMS

机译:直接检查的动态使用MMS dipolarization方面

获取原文
获取原文并翻译 | 示例
           

摘要

Energy conversion on the dipolarization fronts (DFs) has attracted much research attention through the suggestion that intense current densities associated with DFs can modify the more global magnetotail current system. The current structures associated with a DF are at the scale of one to a few ion gyroradii, and their duration is comparable to a spacecraft's spin period. Hence, it is crucial to understand the physical mechanisms of DFs with measurements at a timescale shorter than a spin period. We present a case study whereby we use measurements from the Magnetospheric Multiscale (MMS) Mission, which provides full 3-D particle distributions with a cadence much shorter than a spin period. We provide a cross validation amongst the current density calculations and examine the assumptions that have been adopted in previous literature using the advantages of MMS mission (i.e., small-scale tetrahedron and high temporal resolution). We also provide a cross validation on the terms in the generalized Ohm's law using these advantageous measurements. Our results clearly show that the majority of the currents on the DF are contributed by both ion and electron diamagnetic drifts. Our analysis also implies that the ion frozen-in condition does not hold on the DF, while electron frozen-in condition likely holds. The new experimental capabilities allow us to accurately calculate Joule heating within the DF, which shows that plasma energy is being converted to magnetic energy in our event.
机译:能量转换dipolarization方面(DFs)吸引了许多研究的关注通过暗示强烈的电流密度与DFs可以修改全球磁尾电流体系。结构与DF的规模一些离子gyroradii之一,和他们的持续时间堪比宇宙飞船的自转周期。因此,它是至关重要的理解物理DFs机制与测量时间尺度比自转周期短。一个案例研究中,我们使用的测量磁性层的多尺度(MMS)的使命提供完整的三维粒子分布的节奏比自转周期更短。提供一个在当前交叉验证密度计算和检验假设已经采用以前的文献使用MMS任务的优势(例如,小规模的四面体和高时间分辨率)。在广义欧姆定律的使用条款这些有利的测量。清楚地表明,大部分的电流DF是由离子和电子抗磁性漂移。离子冻结在条件不坚持DF,电子可能冻结在条件成立。准确地计算中的焦耳加热DF,这表明,等离子体的能量在我们的活动转化为磁能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号