...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Minimization of loss in small scale axial air turbine using CFD modeling and evolutionary algorithm optimization
【24h】

Minimization of loss in small scale axial air turbine using CFD modeling and evolutionary algorithm optimization

机译:使用CFD建模和进化算法优化将小型轴流式空气涡轮机的损失降至最低

获取原文
获取原文并翻译 | 示例
           

摘要

Small scale axial air driven turbine (less than 10 kW) is the crucial component in distributed power generation cycles and in compressed air energy storage systems driven by renewable energies. Efficient small axial turbine design requires precise loss estimation and geometry optimization of turbine blade profile for maximum performance. Loss predictions are vital for improving turbine efficiency. Published loss prediction correlations were developed based on large scale turbines; therefore, this work aims to develop a new approach for losses prediction in a small scale axial air turbine using computational fluid dynamics (CFD) simulations. For loss minimization, aerodynamics of turbine blade shape was optimized based on fully automated CFD simulation coupled with Multi-objective Genetic Algorithm (MOGA) technique. Compare to other conventional loss models, results showed that the Kacker & Okapuu model predicted the closest values to the CFD simulation results thus it can be used in the preliminary design phase of small axial turbine which can be further optimized through CFD modeling. The combined CFD with MOGA optimization for minimum loss showed that the turbine efficiency can be increased by 12.48% compare to the baseline design. (C) 2016 Elsevier Ltd. All rights reserved.
机译:小型轴流式空气涡轮机(小于10 kW)是分布式发电周期和由可再生能源驱动的压缩空气储能系统中的关键组件。高效的小型轴向涡轮机设计需要精确的损耗估计和涡轮叶片轮廓的几何优化,以实现最佳性能。损耗预测对于提高涡轮效率至关重要。基于大型涡轮机开发了已发布的损失预测相关性;因此,这项工作旨在开发一种使用计算流体动力学(CFD)模拟来预测小型轴流式空气涡轮机中损耗的新方法。为了使损失最小化,基于全自动CFD仿真和多目标遗传算法(MOGA)技术优化了涡轮叶片形状的空气动力学性能。与其他常规损失模型相比,结果表明,Kacker&Okapuu模型预测的值最接近CFD仿真结果,因此可用于小型轴流涡轮机的初步设计阶段,可通过CFD建模对其进行进一步优化。 CFD与MOGA优化相结合以实现最小损失,表明与基准设计相比,涡轮机效率可提高12.48%。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号