...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge
【24h】

Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

机译:喷嘴几何形状对燃气轮机叶片前缘涡流冷却流动和传热性能的影响

获取原文
获取原文并翻译 | 示例

摘要

In this paper, 3D viscous steady Reynolds Averaged Navier-Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-omega model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by carefully designing and optimizing the vortex chamber geometry. (C) 2015 Published by Elsevier Ltd.
机译:在本文中,利用3D粘性稳态雷诺平均Navier-Stokes(RANS)方程来研究喷嘴几何形状对燃气轮机叶片涡流冷却的流动和热行为的影响。比较了不同湍流模型的计算结果和实验数据,结果表明标准的k-omega模型提供了最佳的精度。执行网格独立性分析以获得适当的网格数。首先,进一步讨论了涡流冷却的机理,并确认了动荡湍流强度,薄的热边界层,剧烈的径向对流和复杂的涡流对增强的传热性能的显着影响。然后,选择七个喷嘴的长宽比和七个喷嘴与腔室的横截面积之比来研究涡流冷却的流场和热特性,重点是流线,静压比,总压力损失比和Nusselt数。结果表明,射流喷嘴的长径比和射流喷嘴与腔室的横截面积之比均对流量和热参数产生重大影响。平均努塞尔数首先减小,然后随着喷嘴纵横比的增加而增加,当纵横比等于1时达到最高。面积比对平均努塞尔数的影响很复杂。最后,将本研究中的传热结果与其他先前的工作进行了比较。结果表明与以前的数据很好地吻合,并且可以通过精心设计和优化涡流室的几何形状来获得增强的热性能。 (C)2015由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号