首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Thermal performance of ultra-thin flattened heat pipes with composite wick structure
【24h】

Thermal performance of ultra-thin flattened heat pipes with composite wick structure

机译:复合灯芯结构超薄扁平热管的热性能

获取原文
获取原文并翻译 | 示例
           

摘要

This study proposes three composite wick structures (copper power or mesh sintered on grooved tube), namely, single arch-shaped sintered-grooved wick (SSGW), bilateral arch-shaped sintered-grooved wick (BSGW), and mesh-grooved wick (MGW), to improve the thermal performance of ultra-thin heat pipes (UTHPs). Phase-change flattening technology is employed to fabricate UTHPs. The morphologies of the wick structures after flattening are observed. An experimental apparatus is setup to investigate the thermal performance of UTHP samples under incremental heat loads. The heat transfer limits of UTHP are theoretically and experimentally analyzed. Capillary limit is found to be the main heat transfer limit, and the theoretical values of the samples with SSGW and BSGW are in good agreement with the experimental results. Results indicate that the maximum heat transport capacities are 12 W, 13 W and 14 W, under the corresponding optimum filling ratios of 70%, 70%, and 80%, for the SSGW, BSGW and MGW UTHPs, respectively. Evaporation and condensation thermal resistances of UTHP samples increase with the increase in the filling ratio before the occurrence of dry-out. UTHPs with SSGW have the least evaporation thermal resistance whereas UTHPs with MGW have the least condensation thermal resistance. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这项研究提出了三种复合芯结构(铜粉或在槽管上烧结的网状结构),即单拱形烧结槽芯(SSGW),双边拱形烧结槽芯(BSGW)和网状芯( MGW),以改善超薄热管(UTHP)的热性能。相变平坦化技术用于制造UTHP。观察变平后芯结构的形态。设置了一个实验仪器来研究在增量热负荷下UTHP样品的热性能。理论和实验分析了UTHP的传热极限。毛细极限是主要的传热极限,SSGW和BSGW样品的理论值与实验结果吻合良好。结果表明,在SSGW,BSGW和MGW UTHP的最佳填充率分别为70%,70%和80%的情况下,最大传热能力分别为12 W,13 W和14W。 UTHP样品的蒸发和冷凝热阻随着干of发生之前填充率的增加而增加。具有SSGW的UTHP具有最小的蒸发热阻,而具有MGW的UTHP具有最小的冷凝热阻。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号