首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Multiscale Coupling During Magnetopause Reconnection: Interface Between the Electron and Ion Diffusion Regions
【24h】

Multiscale Coupling During Magnetopause Reconnection: Interface Between the Electron and Ion Diffusion Regions

机译:在多尺度耦合的磁重新连接:电子和之间的界面离子扩散区域

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetospheric multiscale (MMS) encountered the primary low-latitude magnetopause reconnection site when the interspacecraft separation exceeded the upstream ion inertial length. Classical signatures of the ion diffusion region (IDR), including a subion-Alfvénic demagnetized ion exhaust, a superion-Alfvénic magnetized electron exhaust, and Hall electromagnetic fields, are identified. The opening angle between the magnetopause and magnetospheric separatrix is 30? ± 5?. The exhaust preferentially expands sunward, displacing the magnetosheath. Intense pileup of reconnected magnetic flux occurs between the magnetosheath separatrix and the magnetopause in a narrow channel intermediate between the ion and electron scales. The strength of the pileup (normalized values of 0.3 - 0.5) is consistent with the large angle at which the magnetopause is inclined relative to the overall reconnection coordinates. MMS-4, which was two ion inertial lengths closer to the X line than the other three spacecraft, observed intense electron-dominated currents and kinetic-to-electromagnetic-field energy conversion within the pileup. MMS-1, MMS-2, and MMS-3 did not observe the intense currents nor the particle-to-field energy conversion but did observe the pileup, indicating that the edge of the generation region was contained within the tetrahedron. Comparisons with particle-in-cell simulations reveal that the electron currents and large inclination angle of the magnetopause are interconnected features of the asymmetric Hall effect. Between the separatrix and the magnetopause, high-density inflowing magnetosheath electrons brake and turn into the outflow direction, imparting energy to the normal magnetic field and generating the pileup. The findings indicate that electron dynamics are likely an important influence on the magnetic field structure within the ion diffusion region.
机译:磁性层的多尺度(MMS)碰到了主要低纬度磁重联网站当interspacecraft超过分离上游离子惯性长度。签名的离子扩散区域(IDR),包括subion-Alfvenic退磁离子排气,superion-Alfvenic磁化电子排气,大厅电磁场识别。磁层和磁性层的分界线是30 ?±5 ?。取代磁鞘。连接之间的磁通发生磁鞘分隔号,磁层一条狭窄的通道和离子之间的中间电子天平。(0.3 - 0.5)归一化值是一致的大角度的磁层倾向于相对于整体重新连接坐标。长度比其他三个接近X线航天器,观察强烈electron-dominated水流和kinetic-to-electromagnetic-field能量转换的连环相撞。MMS-2, MMS-3没有观察激烈电流和particle-to-field能量转换但并观察连环相撞,指示这一代的边缘地区包含在四面体。particle-in-cell模拟显示,电子电流和大倾角磁层相互连接的特性不对称的霍尔效应。分界线和磁层,高密度流入磁鞘电子刹车和转弯到流出方向,传授的能量正常的磁场和生成连环相撞。动力学可能是一个重要的影响磁场结构离子内扩散地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号