首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation
【24h】

Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

机译:超临界二氧化碳布雷顿循环的直接加热管式太阳能接收器的耦合模型:光学和热流体评估

获取原文
获取原文并翻译 | 示例
       

摘要

Single phase performance and appealing thermo-physical properties make supercritical carbon dioxide (s-CO2) a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures similar to 973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver's thermal performance when exposed to a concentrated solar power input of similar to 0.3-0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. An in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. A receiver thermal efficiency similar to 85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration. Published by Elsevier Ltd.
机译:单相性能和吸引人的热物理性质使超临界二氧化碳(s-CO2)成为集中太阳能(CSP)技术的良好传热流体候选对象。为了合并CSP和s-CO2布雷顿循环技术,需要开发一种能够在类似于973 K的出口温度下输送s-CO2的太阳能接收器。进行管状接收器的光学和热流体耦合建模工作,以评估直接管状s-CO2接收器在暴露于类似0.3-0.5 MW的集中太阳能输入时的热性能。使用SolTrace进行光线跟踪以确定接收器上的热通量分布,计算流体力学(CFD)确定在指定加热条件下接收器的热性能。开发了内部MATLAB代码以耦合SolTrace和ANSYS Fluent。使用ANSYS Fluent进行CFD建模,通过评估辐射和对流热损失机制来预测接收器的热性能。通过参数分析可以了解定日镜瞄准策略和流量配置的变化对接收器热性能的影响。预计接收器的热效率接近85%,并且观察到的表面温度在所考虑材料的允许极限内。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号