首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >The jet impingement boiling heat transfer with ad hoc wall thermal boundary conditions
【24h】

The jet impingement boiling heat transfer with ad hoc wall thermal boundary conditions

机译:特殊壁面热边界条件下的射流冲击沸腾换热

获取原文
获取原文并翻译 | 示例
           

摘要

In a two-phase heat exchanger, the thermal boundary condition at the boiling wall plays an import role. To investigate the characteristics of its flow and heat transfer, it is required to solve a three-domain conjugation heat transfer problem which takes into account of boiling, conduction, and air convection. In the current design, the saturated water flows into a cylindrical chamber with a tube array, whereas the hot air travels outside of chamber and boils the water inside. The effects of the water inlet velocity and hot air inlet mass flow rate are measured in the experiments. A simulation tool with Graphical User Interface code is developed for predicting the three-domain conjugation heat transfer. The boiling heat transfer in the complex case is showed to be well explained in the approach of combining the Rensselaer Polytechnic Institute (RPI) boiling model. The experiments indicate that the wall temperature on the solid-air interface and the transferred energy are independent of water inlet velocity but significantly depend on the air inlet mass flow rate. The wall temperatures in the centre core area (tube array region) are relatively uniform, whereas a huge temperature gradient is measured in the peripheral area. The maximum temperature difference in the core region is only around 17.7% or 24.6% of the core-to peripheral temperature difference in the cases with the high or low air inlet velocity. The experimental observations have been reproduced in the simulation. The heat transfers on the hot air side and the water boiling side significantly influence each other. Prominent variations of wall temperature and heat flux result iri a co-existence of single-phase water convection and the water boiling flow. It demonstrates that the conjugation has to be considered with applying an ad hoc thermal boundary conditions in the cases. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在两相热交换器中,沸腾壁处的热边界条件起重要作用。为了研究其流动和热传递的特性,需要解决考虑沸腾,传导和空气对流的三域共轭传热问题。在当前设计中,饱和水流入带有管阵列的圆柱形腔室中,而热空气则流到腔室外部并将内部的水沸腾。在实验中测量了进水速度和热风入口质量流速的影响。开发了带有图形用户界面代码的仿真工具,用于预测三畴共轭传热。复杂情况下的沸腾传热在结合伦斯勒理工学院(RPI)沸腾模型的方法中得到了很好的解释。实验表明,固体-空气界面上的壁温和传递的能量与进水速度无关,但在很大程度上取决于进风口质量流量。中心纤芯区域(管阵列区域)的壁温相对均匀,而在外围区域则测得巨大的温度梯度。在进气速度高或低的情况下,核心区域的最大温差仅为核心与周围温度差的17.7%或24.6%。实验观察已在模拟中重现。在热空气侧和水沸腾侧的热传递彼此显着影响。壁温和热通量的显着变化导致单相水对流和水沸腾流量同时存在。它表明,在这种情况下,必须通过应用临时热边界条件来考虑共轭。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号