首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Heat and mass transfer during adsorption of ammonia in a cylindrical adsorbent bed: thermal performance study of a combined parabolic solar collector, water heat pipe and adsorber generator assembly
【24h】

Heat and mass transfer during adsorption of ammonia in a cylindrical adsorbent bed: thermal performance study of a combined parabolic solar collector, water heat pipe and adsorber generator assembly

机译:圆柱形吸附床中氨吸附过程中的传热和传质:组合式抛物面太阳能集热器,水热管和吸附器发电机组的热性能研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we present the study of adsorption refrigerator which use an activated carbon-pair ammonia. The ability of activated carbons to adsorb large mass of ammonia makes them ideal for use in adsorption refrigeration and pump systems. These systems have not reasonable efficiency. In order to make these systems economically viable, their size must be reduced. This implies a need for a rapid heating and cooling the adsorbent/refrigerant pair. However, the main problems to be overcome is related to the poor heat transfer in the adsorbent bed. So, it is necessary to study and understand the heat and mass transfer within the bed and to improve it. A detailed model of heat and mass transfer into the generator has been developed. For a given heat flux, temperature and adsorbed mass have been computed in every point at each step time along the adsorbed bed (generator). Experimental installation simulating an adsorption machine working within a temperature ranging from 20 to 250℃ and pressure ranging from 0 to 2.5× 10{sup}6 Pa, allows for identification of the generator's equivalent thermal conductivity and internal heat transfer coefficient. These two parameters are then used to simulate thermal performance of a design whose features include the insertion of stainless steel water heat pipe (HP's) condensers into the generator. The HP's evaporator heat input is of solar origin using a compound parabolic collector (CPC). Nominal Solar coefficient of performance, COPs = 14.37% obtained through both Adimensional Exergy Loss (AEL), and COP study, shows the competitiveness of the proposed design.
机译:在本文中,我们介绍了使用活性炭对氨的吸附式制冷机的研究。活性炭吸附大量氨气的能力使其成为吸附制冷和泵系统的理想选择。这些系统的效率不合理。为了使这些系统在经济上可行,必须减小其尺寸。这意味着需要快速加热和冷却吸附剂/制冷剂对。但是,要克服的主要问题与吸附床中较差的传热有关。因此,有必要研究和理解床内的传热和传质并加以改善。已经开发了热量和质量传递到发生器的详细模型。对于给定的热通量,沿着吸附床(发电机)在每个步骤时间的每个点处已计算出温度和吸附质量。实验装置模拟吸附机在20至250℃的温度和0至2.5×10 {sup} 6 Pa的压力下工作,可以识别发生器的等效热导率和内部传热系数。然后使用这两个参数来模拟设计的热性能,该设计的功能包括将不锈钢水热管(HP)冷凝器插入发电机。 HP的蒸发器热量输入是使用复合抛物线收集器(CPC)产生的太阳能。通过三维失能损耗(AEL)和COP研究获得的标称太阳能性能系数COPs为14.37%,显示了所提出设计的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号