...
首页> 外文期刊>Nanoscale >Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)_(0.13)/G anodes
【24h】

Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)_(0.13)/G anodes

机译:锂离子电池催化剂工程:通用电气的催化作用增强的电化学性能SnO2 (GeO2) _ (0.13) / G阳极

获取原文
获取原文并翻译 | 示例

摘要

The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO2/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO2) and SnO2 nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO2(GeO2)_(0.13)/G nanocomposites can deliver a capacity of 1200 mA h g~(-1) at a current density of 100 mA g~(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (~702 mA h g~(-1)). More importantly, the SnO2(GeO2)_(0.13)/G nanocomposites exhibited an improved rate, large current capability (885 mA h g~(-1) at a discharge current of 2000 mA g~(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO2 and GeO2) during the charge/ discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.
机译:锗(Ge)的催化作用研究提高电化学二氧化锡生长在石墨烯的性能(SnO2 / G)纳米复合材料作为阳极材料锂离子电池(LIBs)。(GeO2)和SnO2纳米颗粒(< 10海里)通过一个均匀固定在石墨烯表简单的单步热液的方法。合成SnO2 (GeO2) _ (0.13) / G纳米复合材料可以提供一个容量1200毫安h g ~ (1)100毫安的电流密度g ~(1),这是多少高于传统理论具体能力的纳米复合材料(~ 702 mA hg ~(1))。SnO2 (GeO2) _ (0.13) / G纳米复合材料表现出一个提高速度,大电流能力(885毫安hg ~(1)的放电电流2000毫安g ~ (1))和优秀的长期循环稳定性(几乎100%600个周期后保留)。电化学性能归因于通用电气的催化效果,使可逆反应的金属(Sn和Ge)金属氧化物(SnO2和GeO2)期间费用/放电过程。对纳米复合材料催化剂工程打开新一代高性能的新途径可充电锂离子电池阳极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号