...
首页> 外文期刊>Nanoscale >Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage
【24h】

Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage

机译:大规模的SnO2低温制造空心/纳米多孔纳米结构:template-engaged置换反应机理和高效的锂存储

获取原文
获取原文并翻译 | 示例
           

摘要

The morphology-controlled synthesis of SnO2 hollow/nanoporous nanostructures (nanotubes, urchin-like morphologies and nanospheres) was achieved via a template-engaged replacement reaction at a mild temperature (lower than 80 °C). The formation mechanism of hollow interior and nanoporous walls for the obtained SnO2 nanostructures (SnO2 nanotubes were used as an example) was investigated based on TEM and HRTEM observations during different reaction stages. It is found that bridge voids firstly form at the MnO2/SnO2 interface, followed by the inward development of voids before the MnO2 core is completely consumed. Two types of short-circuited galvanic cells, MnO2/Mn~(2+)|SnO2/Sn~(2+) and concentration cell-SnO2/Sn~(2+) (interior)|SnO2/Sn~(2+) (exterior), are probably responsible for the formation of SnO2 nanotubes and outward growth of SnO2 along MnO2. Moreover, the calculation result of the outer diameter of SnO2 nanotubes is in good agreement with the observation results by SEM and TEM. When evaluated as anodes for lithium ion batteries (LIBs), the three SnO2 nanostructures exhibit superior rate capability and cycling performance. Especially, SnO2 nanotubes present the best rate capability: specific capacities of above 800 mA h g~(-1) at 200 mA g~(-1) and about 500 mA h g~(-1) at 4000 mA g~(-1) were achieved, respectively. Importantly, the 1D morphology of SnO2 nanotubes can be well preserved after prolonged cycling at a relatively high current density, indicating good structural stability of the resulting nanotubes during the Li~+ insertion/extraction process. These results indicate that the obtained SnO2 hollow/nanoporous nanostructures would be promising anode materials for next-generation LIBs.
机译:SnO2的morphology-controlled合成空心/纳米多孔纳米结构(纳米管,urchin-like形态和团簇)实现通过template-engaged替换反应在温和的温度(低于80°C)。并为获得的SnO2纳米多孔墙纳米结构(SnO2纳米管是用作基于TEM和HRTEM)进行了研究观察在不同反应阶段。首先发现桥空洞形成的汇总/ SnO2接口,其次是内在的空洞在汇总核心的发展完全消耗。电电池,汇总/ Mn ~ (2 +) | SnO2 / Sn ~(2 +)和浓度cell-SnO2 / Sn ~ (2 +)(内部)| SnO2 / Sn ~(2 +)(外观),可能是负责SnO2纳米管的形成向外发展SnO2汇总。外直径的计算结果SnO2纳米管是在良好的协议通过SEM和TEM观察结果。评估作为锂离子电池阳极(库),三个SnO2纳米结构展览优越的性能和循环性能。尤其是SnO2纳米管目前最好的利率能力:马的特定能力超过800 h马g ~(1)在200 g ~(1)和大约500 mA h g ~ (1)马在4000 g ~(1)实现,分别。重要的是,1 d SnO2纳米管的形态可以保存完好的经过长时间骑自行车吗相对较高的电流密度,表示良好的结构稳定性的结果纳米管在李~ +插入/提取的过程。SnO2空心/纳米多孔纳米结构有前途的下一代阳极材料填词。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号