...
首页> 外文期刊>Nanoscale >Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition
【24h】

Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition

机译:增强光电化学分解水二氧化钛纳米管阵列涂上的性能一个超薄nitrogen-doped碳膜分子层沉积

获取原文
获取原文并翻译 | 示例

摘要

Vertically oriented TiO2 nanotube arrays (TNTAs) were conformally coated with an ultrathin nitrogen-doped (N -doped) carbon film via the carbonization of a polyimide film deposited by molecular layer deposition and simultaneously hydrogenated, thereby creating a core/shell nanostructure with a precisely controllable shell thickness. The core/shell nanostructure provides a larger heterojunction interface to substantially reduce the recombination of photogenerated electron-hole pairs, and hydrogenation enhances solar absorption of TNTAs. In addition, the N-doped carbon film coating acts as a high catalytic active surface for oxygen evolution reaction, as well as a protective film to prevent hydrogen-treated TiO2 nanotube oxidation by electrolyte or air. As a result, the N-doped carbon film coated TNTAs displayed remarkably improved photocurrent and photostability. The TNTAs with a N-doped carbon film of ~1 nm produces a current density of 3.6 mA cm~(-2) at 0 V vs. Ag/AgCl under the illumination of AM 1.5G (100 mW cm~(-2)), which represents one of the highest values achieved with modified TNTAs. Therefore, we propose that ultrathin N-doped carbon film coating on materials is a viable approach to enhance their PEC water splitting performance.
机译:垂直定向二氧化钛纳米管阵列(TNTAs)和一个超薄是保形涂层吗碳膜通过nitrogen-doped (N再版)碳化的聚酰亚胺薄膜沉积同时分子层沉积氢化,从而创建一个核/壳纳米结构的精确可控的壳厚度。一个更大的异质结界面大幅减少的重组photogenerated电子空穴对太阳能吸收TNTAs氢化作用增强。此外,n型碳膜涂层的行为作为氧的高催化活性表面进化的反应,以及保护膜为了防止hydrogen-treated二氧化钛纳米管氧化电解质或空气。n型碳膜涂布TNTAs显示显著提高光电流和耐光性。电影~ 1 nm产生电流密度为3.6马厘米~(2)在0 V与Ag / AgCl下照明是1.5 g (100 mW厘米~ (2))代表值达到最高的国家之一TNTAs与修改。超薄n型碳膜涂层材料是一种可行的方法来提高自己光解水制氢研究压电陶瓷性能。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号