...
首页> 外文期刊>Blood: The Journal of the American Society of Hematology >A novel mechanism for egress of malarial parasites from red blood cells.
【24h】

A novel mechanism for egress of malarial parasites from red blood cells.

机译:从红细胞中排出疟原虫的新机制。

获取原文
获取原文并翻译 | 示例

摘要

The culminating step of the intraerythrocytic development of Plasmodium falciparum, the causative agent of malaria, is the spectacular release of multiple invasive merozoites on rupture of the infected erythrocyte membrane. This work reports for the first time that the whole process, taking place in time scales as short as 400 milliseconds, is the result of an elastic instability of the infected erythrocyte membrane. Using high-speed differential interference contrast (DIC) video microscopy and epifluorescence, we demonstrate that the release occurs in 3 main steps after osmotic swelling of the infected erythrocyte: a pore opens in approximately 100 milliseconds, ejecting 1-2 merozoites, an outward curling of the erythrocyte membrane is then observed, ending with a fast eversion of the infected erythrocyte membrane, pushing the parasites forward. It is noteworthy that this last step shows slight differences when infected erythrocytes are adhering. We rationalize our observations by considering that during the parasite development, the infected erythrocyte membrane acquires a spontaneous curvature and we present a subsequent model describing the dynamics of the curling rim. Our results show that sequential erythrocyte membrane curling and eversion is necessary for the parasite efficient angular dispersion and might be biologically essential for fast and numerous invasions of new erythrocytes.
机译:疟疾的病原体恶性疟原虫的红细胞内发育的最终步骤是感染的红细胞膜破裂后多种侵入性裂殖子的惊人释放。这项工作首次报告,整个过程发生在短至400毫秒的时间范围内,是受感染的红细胞膜弹性不稳定的结果。使用高速微分干涉对比(DIC)视频显微镜和落射荧光,我们证明了释放是在被感染红细胞渗透性溶胀后的3个主要步骤中发生的:一个孔大约在100毫秒内打开,弹出1-2个裂殖子,向外卷曲然后观察到红细胞膜的病原体,以感染的红细胞膜的快速外翻结束,将寄生虫向前推进。值得注意的是,当感染的红细胞粘附时,最后一步显示出细微差别。我们通过考虑寄生虫发育过程中受感染的红细胞膜获得自发曲率来合理化我们的观察结果,并提出描述卷曲边缘动态的后续模型。我们的研究结果表明,顺序进行的红细胞膜卷曲和外翻对于寄生虫有效的角扩散是必要的,并且可能对于新红细胞的快速大量入侵具有生物学上的必要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号