首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: Application to a crystalline aquifer of Southern India
【24h】

Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: Application to a crystalline aquifer of Southern India

机译:使用反应性多组分瞬态迁移模型模拟地下水中的氟化物释放:在印度南部的结晶含水层中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Overexploitation of crystalline aquifers in a semi-arid climate leads to a degradation of water quality, with the main processes responsible for the observed salt loads probably being irrigation return flow (IRF) and a high evaporation rate. The present study has focused on modelling the F~- accumulation caused by IRF below rice paddy fields in the small endorheic Maheshwaram watershed (Andhra Pradesh, Southern India). The transient simulation was performed with a 1D reactive transport PHREEQC column and took into account IRF evaporation, kinetically controlled mineral dissolution/precipitation, ion adsorption on Fe hydroxides, and mixing with fresh groundwater. The results revealed the role of cationic exchange capacity (CEC) in Ca/Na exchange and calcite precipitation, both favouring a decrease of the Ca~(2+) activity that prevents fluorite precipitation. Iron hydroxide precipitation offers a not inconsiderable adsorption capacity for F~- immobilization. The principal sources of F~- are fluorapatite dissolution and, to a lesser extent, allanite and biotite dissolution. Anthropogenic sources of F~-, such as fertilizers, are probably very limited. After simulating an entire dry-season irrigation cycle (120days), the results are in good agreement with the observed overall increase of Cl~- in the Maheshwaram groundwater. The model enables one to decipher the processes responsible for water-resource degradation through progressive salinization. It shows that F~- enrichment of the groundwater is likely to continue in the future if groundwater overexploitation is not controlled.
机译:在半干旱气候下,对水晶含水层的过度开采会导致水质下降,导致观测到的盐分负荷的主要过程可能是灌溉回流(IRF)和高蒸发率。本研究的重点是模拟由内生的小内生性Maheshwaram流域(印度南部安得拉邦)的稻田下IRF引起的F〜-积累。瞬态模拟是使用一维反应性运输PHREEQC色谱柱进行的,并考虑了IRF蒸发,动力学控制的矿物溶解/沉淀,离子在氢氧化铁上的吸附以及与新鲜地下水的混合。结果揭示了阳离子交换容量(CEC)在Ca / Na交换和方解石沉淀中的作用,均有助于降低Ca〜(2+)活性,从而防止萤石沉淀。氢氧化铁沉淀为F-固定提供了不容忽视的吸附能力。 F-的主要来源是氟磷灰石的溶解,在较小程度上是尿石和黑云母的溶解。 F〜-的人为来源,例如肥料,可能非常有限。模拟整个干旱季节的灌溉周期(120天)后,结果与在Maheshwaram地下水中观测到的Cl〜-的总体增加情况非常吻合。该模型使人们能够通过逐步盐化来解释造成水资源退化的过程。它表明,如果不控制地下水的过度开采,将来可能会继续富集地下水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号