...
首页> 外文期刊>Catalysis science & technology >Ultrafine Au nanoparticles anchored on Bi2MoO6 with abundant surface oxygen vacancies for efficient oxygen molecule activation
【24h】

Ultrafine Au nanoparticles anchored on Bi2MoO6 with abundant surface oxygen vacancies for efficient oxygen molecule activation

机译:超细Au纳米粒子固定在Bi2MoO6丰富的表面氧空位高效的氧分子活化

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen molecule activation is one of the most important processes to generate oxygen-containing active free radicals for organic pollutant photocatalytic decomposition. Herein, we demonstrated ultrafine Au nanoparticles (NPs) anchored on porous Bi2MoO6 (BMO) microspheres with rich surface oxygen vacancies (SOVs) planted via a simple chemical reduction-deposition method, which could effectively enhance the separation of photogenerated carriers for oxygen molecule activation, and thus lead to a more efficient photocatalytic decomposition ability of the phenol and dye. The sample (4.0% Au/Bi2MoO6) exhibited a remarkable photocatalytic performance for phenol, which is 15 times higher than BMO. The systematic studies indicate that the excellent photocatalytic activity of Au/Bi2MoO6 should be ascribed predominantly to the synergistic effect between SOVs, Au NPs and BMO. Both SOV and Au NP surface plasmonic resonance (SPR) can not only improve the separation and migration of the photogenerated electron (e(-))/hole(h(+)) pairs, but can also broaden the light responsive spectra, and thereby facilitate the oxygen molecule activation. It also reveals that the photocurrent intensity of the 4% Au/BMO sample is approximately 36-fold larger than that of pure BMO, and the ESR signal intensities of O-2(-) and OH for Au/BMO exhibit an enhancing tendency compared to pure-BMO, demonstrating that SOVs and Au NPs are responsible for the promoted photocatalytic activity of the Bi2MoO6 nanostructure. Furthermore, the band gap position of Au/BMO was determined by employing UV-vis-DRS spectra, VB-XPS and Mott-Schottky plots, thus the enhancement mechanism of oxygen molecule activation is further elucidated.
机译:氧气分子激活是最之一重要的进程生成含氧有机污染物的活性自由基光催化分解。证明了超细Au纳米颗粒(NPs)固定在多孔Bi2MoO6(蒙特利尔银行)微球丰富的表面氧空位(位)种植通过一个简单的化学reduction-deposition方法,该方法可以有效地提高photogenerated运营商对氧的分离分子活化,从而导致更多的高效光催化分解的能力苯酚和染料。表现出显著的光催化性能苯酚,蒙特利尔银行的15倍。系统研究表明,优秀的Au / Bi2MoO6催化活性的应主要归因于位之间的协同效应,非盟NPs和蒙特利尔银行。两位和非盟NP表面电浆共振(SPR)不仅可以提高分离和photogenerated电子的迁移(e(-)) /洞(h(+))对,但是也可以扩大光响应谱,从而促进氧气分子激活。非盟的光电流强度4% /蒙特利尔银行样品大约是36-fold大于纯粹的蒙特利尔银行,ESR信号强度0 2(-)和Au /蒙特利尔银行表现出一种提高哦趋势与pure-BMO相比,证明位和非盟NPs负责推广Bi2MoO6的光催化活性纳米结构。盟/蒙特利尔银行由用人UV-vis-DRS决定光谱,VB-XPS Mott-Schottky情节,因此增强氧的分子机制激活进一步阐明。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号