...
首页> 外文期刊>Nanoscale >Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories
【24h】

Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories

机译:纳米结构的重组Cu-filament conductive-bridge记忆

获取原文
获取原文并翻译 | 示例

摘要

The electrochemical reactions triggering resistive switching in conductive-bridge resistive random access memory (CBRAM) are spatially confined in few tens of nm(3). The formation and dissolution of nanoscopic Cu-filaments rely on the displacement of ions in such confined volume, and it is driven by the electric field induced ion migration and nanoscaled redox reactions. The stochastic nature of these fundamental processes leads to a large variability of the device performance. In this work, a combination of two-and three-dimensional scanning probe microscopy (SPM) techniques are used to study the conductive filament (CF) formation, rupture and its nanoscopic structural rearrangements. The high spatial confinement of our approach enables to locally induce RS in a confined area and image it in 3D. A conical shape of the CF is consistently observed, indicating that the ion migration is the rate limiting step in the filament formation when using high quality dielectrics as switching layers. The sub-10 nm electrical contact size of the AFM tip is used to study the filament's dissolution and detect the hopping conduction of Cu during the CF rupture. We consistently observe a tunnel gap formation associated with the tip-induced filament reset. Finally, aiming to match the fundamental understanding with the integrated device operations, we apply scalpel SPM to failed memory cells and directly observe the appearance of filament multiplicity as a major source of failures and variability in CBRAM.
机译:电化学反应触发电阻开关在conductive-bridge电阻随机的存取存储器(CBRAM)空间局限几十纳米(3)。的纳米Cu-filaments依赖离子的位移在这种限制体积,它是由电场诱导离子迁移和纳米级氧化还原反应。这些基本过程的随机性质导致大变化的装置的性能。超预算三维扫描探针显微镜(SPM)技术用于研究导电纤维(CF)的形成,破裂其纳米结构重组。高我们的方法使空间约束在限制区域和局部诱导RS图像在3 d。持续观察,表明离子迁移率限制的一步丝当使用高品质的形成电介质层切换。电接触使用AFM小费的大小研究纤维的溶解和检测跳跃传导的铜CF破裂。我们持续观察隧道差距的形成与tip-induced灯丝重置。最后,目标匹配的根本理解与集成的设备操作,我们使用手术刀SPM失败的记忆细胞和直接观察的外观灯丝多样性的主要来源在CBRAM失败和可变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号