...
首页> 外文期刊>Nanoscale >The effect of nanoparticle packing on capacitive electrode performance
【24h】

The effect of nanoparticle packing on capacitive electrode performance

机译:纳米填料对电容的影响电极的性能

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance.
机译:纳米颗粒包装在一起,形成大规模的电极在不同类型的设备,因此,优化纳米包装的实现一个理想的的先决条件设备的性能。深入了解纳米颗粒的影响包装在nanoparticle-based的性能结合实验和电极计算结果。聚吡咯的三个不同的团簇直径是用来构造pseudocapacitive电极,电极的性能检查各nanosphere直径吗比率和混合重量分数。算法提出了模拟随机的包装上的团簇电极。二元团簇表现出多样化、复杂与单相包装行为包装每个nanosphere物种。的较低的两种nanosphere直径率在一个优化组合可能导致在致密堆积的团簇将可能导致更好的设备的性能。将提供更高效的运输途径为离子由于inter-nanosphere减少孔隙大小和表面积增大存储。方法可广泛用于定义的概念“最好的纳米包装”可取的设备的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号