...
首页> 外文期刊>Applied Microbiology and Biotechnology >Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors
【24h】

Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

机译:空气阴极微生物燃料电池,开路和密闭反应堆中细菌和古细菌群落的特征

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m ~2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities.
机译:由于氧气通过阴极转移,因此损失了微生物燃料电池(MFC)中消耗的大部分有机燃料。为了理解这种氧转移如何影响微生物群落结构,使用三种配置一式两份地操作反应器:闭路(CC;带电流),开路(OC;无电流)和密封的阴极(SO;无电)。无电流,并在阴极上放置一块实心板)。在CC反应堆发电期间,大部分(98%)的化学需氧量(COD)被去除(最大640±10 mW / m〜2),底物转化为电流的百分比低(库仑效率为26.5± 2.1%)。密封阴极可将COD去除率降低到7%,但是在阴极敞开的情况下,OC反应器的COD去除率几乎等于CC反应器的94.5%。氧气转移到反应器中会严重影响微生物群落的组成。根据使用16S rRNA基因焦磷酸测序对生物膜进行的分析,最接近于Geobacter的微生物主要位于CC MFC的阳极上(占序列的72%),但最丰富的细菌是OC反应器中的偶氮菌(占42%至47%)和SO反应器中的Dechloromonas(17%)。氢营养型产甲烷菌最主要,其序列与CC和SO反应器中的甲烷菌以及OC反应器中的甲烷菌最相似。这些结果表明,通过阴极的氧气泄漏实质上改变了细菌的阳极群落,尽管营养盐含量很高,但氢营养型产甲烷菌仍占主导地位。 CC反应器中主要的产甲烷菌最类似于SO反应器中的产甲烷菌,这表明氧气泄漏会改变产甲烷菌以及一般细菌群落。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号