首页> 外文期刊>Applied Microbiology and Biotechnology >Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation [Review]
【24h】

Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation [Review]

机译:生物浸出评论A部分:生物浸出的进展:细菌金属硫化物氧化的基本原理和机理[评论]

获取原文
获取原文并翻译 | 示例
       

摘要

Bioleaching of metal sulfides is caused by astonishingly diverse groups of bacteria. Today, at least 11 putative prokaryotic divisions can be related to this phenomenon. In contrast, the dissolution (bio)chemistry of metal sulfides follows only two pathways, which are determined by the acid-solubility of the sulfides: the thiosulfate and the polysulfide pathway. The bacterial cell can effect this sulfide dissolution by "contact" and "non-contact" mechanisms. The non-contact mechanism assumes that the bacteria oxidize only dissolved iron(II) ions to iron(III) ions. The latter can then attack metal sulfides and be reduced to iron(II) ions. The contact mechanism requires attachment of bacteria to the sulfide surface. The primary mechanism for attachment to pyrite is electrostatic in nature. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions in the contact mechanism is mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in the non-contact mechanism. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a complex redox chain located below the outer membrane, the periplasmic space, and the cytoplasmic membrane of leaching bacteria. The dominance of either At. ferrooxidans or Leptospirillum ferrooxidans in mesophilic leaching habitats is highly likely to result from differences in their biochemical iron(II) oxidation pathways, especially the involvement of rusticyanin. [References: 91]
机译:金属硫化物的生物浸出是由种类繁多的细菌引起的。今天,至少有11个推定的原核分裂可能与这种现象有关。相反,金属硫化物的溶解(生物)化学仅遵循两条途径,这是由硫化物的酸溶性决定的:硫代硫酸盐途径和多硫化物途径。细菌细胞可以通过“接触”和“非接触”机制影响硫化物的溶解。非接触机制假定细菌仅将溶解的铁(II)离子氧化为铁(III)离子。后者然后可以侵蚀金属硫化物并还原为铁离子。接触机理要求细菌附着于硫化物表面。本质上,附着到黄铁矿的主要机理是静电的。就酸性氧化亚铁杆菌而言,细菌外聚合物含有铁(III)离子,每个离子都被两个糖醛酸残基复合。产生的正电荷允许附着到带负电荷的黄铁矿上。因此,络合铁(III)离子在接触机理中的第一功能是介导细胞附着,而其第二功能是金属硫化物的氧化溶解,类似于游离铁(III)离子在非接触中的作用。机制。在这两种情况下,从金属硫化物提取的电子都通过位于细菌外膜,周质空间和细胞质膜下方的复合氧化还原链还原分子氧。在任一的主导地位。中温浸出栖息地中的亚铁氧化铁或钩端螺旋体亚铁氧化铁很可能是由于其生化铁(II)氧化途径的差异,尤其是质朴花青素的参与所致。 [参考:91]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号