...
首页> 外文期刊>Applied Microbiology and Biotechnology >Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production
【24h】

Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production

机译:阐明和重新编程大肠杆菌代谢,专职生产厌氧正丁醇和异丁醇

获取原文
获取原文并翻译 | 示例
           

摘要

Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the nbutanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these "defective" metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (?8-9 genes), addition (?6-7 genes), up- and downexpression (?6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of nbutanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in "core" metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.
机译:基于基于约束的代谢网络建模的基本模式(EM)分析用于阐明和比较大肠杆菌的复杂发酵代谢,以专性厌氧生产正丁醇和异丁醇。结果表明,正丁醇发酵代谢为NADH缺陷,而异丁醇发酵代谢为NADH冗余。大肠杆菌可以厌氧地生长和生产作为唯一的发酵产物的正丁醇,但不能达到最大的理论正丁醇产量。相反,对于异丁醇发酵代谢,大肠杆菌需要与产生乙醇或琥珀酸盐的途径偶联以循环利用NADH。为了克服这些“有缺陷的”新陈代谢,进行了电磁分析以重新编程大肠杆菌的天然发酵代谢,以通过多个基因缺失(?8-9基因),添加(?6-7)来优化厌氧生产正丁醇和异丁醇。基因),上,下表达(?6-7基因)和辅助因子工程设计(例如,NADH,NADPH)。设计的菌株被迫结合正丁醇和异丁醇的生长和厌氧生产,这是通过代谢途径进化增强生物燃料生产和耐受性的有用特性。即使正丁醇和异丁醇的发酵代谢差异很大,也可以对设计的菌株进行改造,使其在“核心”代谢途径中具有相同的代谢通量分布,主要支持细胞的生长和维持。最后,已发表的实验数据验证了在阐明和重新编程大肠杆菌专性厌氧生产正丁醇和异丁醇的自然发酵代谢模型中的模型预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号