...
首页> 外文期刊>Nature Machine Intelligence >Learning interpretable representations of entanglement in quantum optics experiments using deep generative models
【24h】

Learning interpretable representations of entanglement in quantum optics experiments using deep generative models

机译:学习的可翻译的代表纠缠在量子光学实验中使用深层生成模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Quantum physics experiments produce interesting phenomena such as interference or entanglement, which are the core properties of numerous future quantum technologies. The complex relationship between the setup structure of a quantum experiment and its entanglement properties is essential to fundamental research in quantum optics but is difficult to intuitively understand. We present a deep generative model of quantum optics experiments where a variational autoencoder is trained on a dataset of quantum optics experiment setups. In a series of computational experiments, we investigate the learned representation of our quantum optics variational autoencoder (QOVAE) and its internal understanding of the quantum optics world. We demonstrate that QOVAE learns an interpretable representation of quantum optics experiments and the relationship between the experiment structure and entanglement. We show QOVAE is able to generate novel experiments for highly entangled quantum states with specific distributions that match its training data. QOVAE can learn to generate specific entangled states and efficiently search the space of experiments that produce highly entangled quantum states. Importantly, we are able to interpret how QOVAE structures its latent space, finding curious patterns that we can explain in terms of quantum physics. The results demonstrate how we can use and understand the internal representations of deep generative models in a complex scientific domain. QOVAE and the insights from our investigations can be immediately applied to other physical systems. A variational autoencoder is trained on a dataset of quantum optics experiment configurations and learns an interpretable representation of the relationship between experiment setup and quantum entanglement. The approach can be used to explore new experiment designs with specific, highly entangled states.
机译:量子物理实验产生有趣的现象如干扰或纠缠,无数的核心属性的未来量子技术。之间设置一个量子的结构实验和其纠缠特性基础研究在量子的关键光学但很难直观地理解。量子光学实验变分的地方autoencoder训练数据集的量子光学实验设置。计算实验,我们研究学表示我们的量子光学变分autoencoder (QOVAE)和其内部量子光学的理解世界。证明QOVAE学要一个解释量子光学实验和表征实验结构之间的关系和纠缠。生成高度纠缠的新实验量子态与特定的分布匹配它的训练数据。生成特定的纠缠态有效地搜索的实验空间产生高度纠缠的量子态。重要的是,我们能够解释QOVAE如何其潜在的空间结构,发现好奇我们可以解释量子的模式物理。和理解的内部表示深层生成模型在复杂的科学域。可以立即应用于调查其他的物理系统。训练数据集的量子光学吗实验配置和一个学习可表示的关系实验设置和量子之间纠缠。新的实验设计与特定的高度纠缠态。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号