...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties
【24h】

Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties

机译:具有优异光催化性能的超顺磁性γ-Fe2O3@ SiO2 @ TiO2复合微球

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hierarchical porous γ-Fe2O3@SiO2@TiO2 (FST) composite microspheres with sandwich-like structure were fabricated by an effective three-step approach. Specifically, the preformed monodisperse Fe3O4 spheres were used as templates for directing the sequential deposition of SiO2 layer by modified Stober method and subsequent TiO2 layer by vapor-thermal route. Notably, the interior black Fe3O4 templates are converted into dark-brown γ-Fe2O3 during the vapor-thermal assisted TiO2 deposition. By introducing a SiO2 layer between the γ-Fe2O3 core and TiO2 shell, while the superparamagnetic properties was remained to great extent, the photocatalytic activity towards degradation of rhodamine B (RhB) dye molecules was also significantly improved, as compared to that of the Fe3O4@TiO2 (FT) counterparts. This enhancement in photoactivity is mainly attributed to two positive effects of the interbedded SiO2 layer between the γ-Fe2O3 core and TiO2 shell. Firstly, a direct contact and electron injection from TiO2 to γ-Fe2O3is blocked by this wide bandgap SiO2 electronic barrier, which avoids charge recombination at the interface. Secondly, a SiO2 middle layer is a good adsorbent towards dye molecules, which enhances the enrichment of pollutant dye molecules around the porous titania photoactive layer and thus the photocatalytic efficiency. Such a novel multifunctional photocatalytic integrated microspheres can effectively degrade organic pollutants and can be easily recovered by a magnet, which was reused at least five times without any appreciable reduction in photocatalytic efficiency.
机译:通过有效的三步法制备了具有三明治结构的多层多孔γ-Fe2O3@ SiO2 @ TiO2(FST)复合微球。具体地,将预先形成的单分散Fe 3 O 4球用作模板,以指导通过改进的斯托伯方法依次沉积SiO 2层和随后通过蒸气-热途径沉积TiO 2层。值得注意的是,在蒸汽热辅助TiO2沉积过程中,内部黑色Fe3O4模板被转换为深棕色γ-Fe2O3。通过在γ-Fe2O3核和TiO2壳之间引入SiO2层,在很大程度上保留了超顺磁性能的同时,与Fe3O4相比,对罗丹明B(RhB)染料分子降解的光催化活性也得到了显着提高。 @ TiO2(FT)对应物。光活性的这种增强主要归因于γ-Fe2O3核和TiO2壳之间的SiO2层互层的两个积极作用。首先,这种宽带隙SiO2电子势垒阻止了TiO2与γ-Fe2O3的直接接触和电子注入,从而避免了界面处的电荷复合。其次,SiO 2中间层是对染料分子的良好吸附剂,这增强了多孔二氧化钛光敏层周围污染物染料分子的富集,从而提高了光催化效率。这种新颖的多功能光催化集成微球可以有效地降解有机污染物,并且可以很容易地被磁体回收,该磁体可以重复使用至少五次而不会显着降低光催化效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号