...
首页> 外文期刊>Waste Disposal & Sustainable Energy >Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis
【24h】

Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis

机译:Ar-plasma增强氨合成的铜 - 奈克合金催化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract Ammonia (NH3) synthesis via electrocatalytic nitrogen reduction generally suffers from low NH3 yield and faradaic efficiency. Compared with activating stable, low-solubility N2, the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH3 production. Herein, we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH3 production. The NH3 faradaic efficiency from nitrate is nearly 100% and the yield rate is over 6000 μgNH3cm-2h-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathrm{mu g}}_{{mathrm{NH}}_{3}}{mathrm{cm}}^{-2}{mathrm{h}}^{-1}$$end{document}. DFT?(density functional theory) calculation reveals the high performance of Cu50Ni50 originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center. This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.
机译:通过电催化氮的减少,摘要氨(NH3)合成通常患有低NH3产量和法拉达效率。与激活稳定的低溶解性N2相比,硝酸盐向氨的电化学转化为NH3产生提供了更合理的途径。本文中,我们引入了AR-El-plasma,以增强铜 - 尼克合金和碳底物之间的相互作用,以提高NH3产量的性能。硝酸盐的NH3法拉达效率接近100%,收益率超过6000μgnh3cm-2H-1DocumentClass [12pt] {minimal} usepackage {amsmath} usepackage {wasySym {wasysym {wasysym} mathrsfs} usepackage {upgreek} setLength {oddSideMargin} { - 69pt}开始{document} $$ {mathrm {mathrm {mu g}} _ {{mathrm {mathrm {nh}}}} _ {3}} _ {3}}}}} } {Mathrm {H}}}^{ - 1} $$结束{document}。 DFT?(密度功能理论)计算揭示了CU50NI50的高性能起源于反应路径上的较低能屏障,并靠近D-Band中心的费米水平。这项工作为血浆改性的电催化剂提供了一种有希望的策略,可以通过硝酸盐减少促进氨合成。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号