首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions
【24h】

Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions

机译:催化裂化条件下生化生物油和减压瓦斯油催化裂化过程中的双重焦炭失活途径

获取原文
获取原文并翻译 | 示例
           

摘要

Coke deposition pathways have been studied during the fluid catalytic cracking of bio-oil, vacuum gasoil (VGO) and a blend of the previous two (80 wt%VGO and 20 wt% bio-oil), under realistic riser conditions of the fluid catalytic cracking (FCC) unit, using a commercial catalyst at 500 degrees C and contact times of 1.5-10 s. Amount and composition of soluble and insoluble coke in dichloromethane have been analyzed using a set of techniques (TPO, FTIR, C-13 NMR, XPS, Raman GC-MS and MALDI-TOF MS, among others). The relationship of coke deposition with its composition and the reaction medium has allowed us to set two pathways of coke formation: (i) heavy hydrocarbon pathway tend to form ordered polycondensed aromatic nanostructures; whereas (ii) oxygenate pathway tend to form a lighter fraction of coke containing oxygen, less ordered and more aliphatic coke. A synergy between the two pathways have been verified due to the lower coke deposition of the blend compared to the individual components, and this has been explained in terms of (i) attenuation of the heavy hydrocarbon pathway caused by the steam contained or originated from the bio-oil, and (ii) the hydride transfer from hydrocarbons to the precursors of the oxygenate pathway. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机译:在实际的立管条件下,在生物油,真空瓦斯油(VGO)和前两者的混合物(80 wt%VGO和20 wt%生物油)的流化催化裂化过程中,研究了焦炭沉积途径。裂化(FCC)单元,使用市售催化剂在500摄氏度和1.5-10 s的接触时间下进行。已使用一组技术(TPO,FTIR,C-13 NMR,XPS,拉曼GC-MS和MALDI-TOF MS等)分析了二氯甲烷中可溶和不可溶焦炭的量和组成。焦炭沉积与其组成和反应介质之间的关系使我们能够设定两条焦炭形成途径:(i)重烃途径倾向于形成有序的缩聚芳族纳米结构;而(ii)含氧化合物途径往往会形成较轻的含氧焦炭馏分,而有序的脂肪烃含量较高。由于与单独组分相比,共混物的焦炭沉积量较低,因此已验证了这两种途径之间的协同作用,这已通过以下方式进行了解释:(i)由包含或源自蒸汽的蒸汽引起的重质烃途径的衰减生物油,以及(ii)氢化物从碳氢化合物转移到含氧化合物路径的前体。 (C)2015作者。由Elsevier B.V.发布。这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)上的开放获取文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号