...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >A new visible light active multifunctional ternary composite based on TiO2-In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H-2 evolution
【24h】

A new visible light active multifunctional ternary composite based on TiO2-In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H-2 evolution

机译:基于TiO2-In2O3纳米晶异质结修饰的多孔石墨碳氮化物的新型可见光活性多功能三元复合材料,用于光催化处理有害污染物和H-2的生成

获取原文
获取原文并翻译 | 示例
           

摘要

Novel TiO2-In2O3@g-C3N4 hybrid system was synthesized by a facile solvothermal method. The photocatalytic activity of the TiO2-In2O3@g-C3N4 hybrid material was evaluated via degradation of RhB and hydrogen-production. It could be found that TiO2-In2O3@g-C3N4 ternary composites exhibit the highest RhB degradation rate, which was 6.6 times than that of pure g-C3N4. As expected, the H-2-generation rate of the as-prepared ternary materials was found to increase by 48 times than that of pure g-C3N4. The enhanced activities were mainly attributed to the interfacial transfer of photogenerated electrons and holes among TiO2, In2O3 and g-C3N4, leading to the effective charge separation on these semiconductors, which were evidenced by photoluminescence spectroscopy, electrochemical impedance spectroscopy and photocurrent analysis. The photocatalytic mechanism and photostability of the ternary hybrid materials were also proposed. This work may provide a stepping stone towards the design and practical application of multifunctional hybrids photocatalysts in the photocatalytic degradation of pollutions and hydrogen generation. (C) 2015 Elsevier B.V. All rights reserved.
机译:采用简便的溶剂热法合成了新型的TiO2-In2O3 @ g-C3N4杂化体系。通过RhB的降解和氢的产生来评价TiO2-In2O3 @ g-C3N4杂化材料的光催化活性。可以发现,TiO2-In2O3 @ g-C3N4三元复合材料的RhB降解率最高,是纯g-C3N4的6.6倍。如所预期的,发现所制备的三元材料的H 2生成速率比纯g-C 3 N 4的H 2生成速率增加了48倍。增强的活性主要归因于光生电子和空穴在TiO2,In2O3和g-C3N4之间的界面转移,从而导致这些半导体上的有效电荷分离,这通过光致发光光谱,电化学阻抗谱和光电流分析得以证明。还提出了三元杂化材料的光催化机理和光稳定性。这项工作可以为多功能杂化光催化剂在光催化降解污染物和产生氢气方面的设计和实际应用提供一块垫脚石。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号