...
【24h】

Low-temperature oxidation of ethanol over a Mn_(0.6)Ce_(0.4)O2 mixed oxide

机译:Mn_(0.6)Ce_(0.4)O2混合氧化物对乙醇的低温氧化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A Mn_(0.6)Ce_(0.4)O2 mixed oxide exhibited rather high activity and stability for ethanol oxidation. Complete conversion of ethanol to CO2 was obtained at a temperature as low as 463 K and the activity maintained for 120h on-stream without obvious deactivation. The Mn_(0.6)Ce_(0.4)O2 catalyst showed higher ethanol oxidation rate and better selectivity to CO2 which was even superior to a Pt/Al2O3 catalyst. Temperature-programmed surface reaction and spectroscopic studies have revealed that ethoxy species were formed immediately upon ethanol adsorption on the catalyst at room temperature. These intermediates were further oxidized to acetate and carbonate species, and finally converted to CO2 at elevated temperatures. The effective activation of molecule oxygen over the Mn_(0.6)Ce_(0.4)O2 solid solution plays an essential role in determining the catalytic performance. Oxygen transfer from molecular oxygen to MnO2 active sites through CeO2 in the solid solution realized the effective activation of molecular oxygen. At lower temperatures, the oxidation of ethanol mainly produced acetaldehyde, and the direct oxidation of ethanol to CO2 became the major route at higher temperatures, depending on the activation of molecular oxygen.
机译:Mn_(0.6)Ce_(0.4)O2混合氧化物对乙醇氧化表现出相当高的活性和稳定性。在低至463 K的温度下即可将乙醇完全转化为CO2,并且在运行中保持活性120h且无明显失活。 Mn_(0.6)Ce_(0.4)O2催化剂显示出更高的乙醇氧化速率和更好的对CO2的选择性,甚至优于Pt / Al2O3催化剂。程序升温的表面反应和光谱研究表明,在室温下乙醇吸附在催化剂上后立即形成了乙氧基。这些中间体被进一步氧化为乙酸盐和碳酸盐,最后在高温下转化为CO2。 Mn_(0.6)Ce_(0.4)O2固溶体上分子氧的有效活化在确定催化性能方面起着至关重要的作用。氧通过固溶体中的CeO2从分子氧转移到MnO2活性位,实现了分子氧的有效活化。在较低的温度下,乙醇的氧化主要产生乙醛,而在较高的温度下,乙醇的直接氧化成为CO2的主要途径,这取决于分子氧的活化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号