首页> 外文期刊>Information and inference >Ensemble-based estimates of eigenvector error for empirical covariance matrices
【24h】

Ensemble-based estimates of eigenvector error for empirical covariance matrices

机译:基于合奏的经验协方差矩阵特征向量误差的估计值

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological systems. Although the eigenvalues {λ_i} and eigenvectors {u_i} of a covariance matrix are central to such endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite sample size n to obtain empirical eigenvalues {λ_i} and eigenvectors {u_i}, and therefore understanding the error so introduced is of central importance.We analyse eigenvector error ‖u_i? u_i‖~2 while leveraging the assumption that the true covariance matrix having size p is drawn from a matrix ensemble with known spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges as p → ∞to a spectral density ρ(λ) and that the spacing between population eigenvalues is similar to that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector error that require the full set of eigenvalues to be known, which can be computationally infeasible when p is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider a fixed eigenvalue λ and approximate the distribution of the expected square error r = E[‖u_i ? u_i‖2]across the matrix ensemble for all ui associated with λi = λ. We find, for example, that for sufficiently large matrix size p and sample size n > p, the probability density of r scales as 1/nr~2. This power-law scaling implies that the eigenvector error is extremely heterogeneous—even if r is very small for most eigenvectors, it can be large for others with non-negligible probability.We support this and further results with numerical experiments.
机译:协方差矩阵是经济,物理和生物系统的分析和预测的基础。尽管协方差矩阵的特征值{λ_i}和特征向量{u_i}对于此类努力至关重要,但实际上,必须不可避免地基于具有有限样本尺寸n的数据,以获得经验性特征{λ_i}和Eigenvalue {λ_i}和eigenvors}} igenvaluse n andrix矩阵}因此,理解如此引入的错误至关重要。我们分析特征向量错误” u_i? u_i” 〜2在利用以下假设的同时,假设具有大小P的真实协方差矩阵是从具有已知光谱特性的矩阵集合中绘制的,尤其是,我们假设人口特征值的分布弱收敛,因为p→∞to光谱密度ρ(λ)(λ)并且人口特征值之间的间距与高斯正交合奏相似。我们的方法补充了对特征向量误差的先前分析,这些误差需要已知全套特征值,当P大时,在计算上可能是不可行的。为了提供可扩展的方法来定量特征向量误差,我们考虑了固定的特征值λ并近似预期的平方误差r = e ['u_i? u_i” 2]跨矩阵集合,用于与λi=λ相关的所有UI。我们发现,例如,对于足够大的矩阵尺寸P和样本尺寸n> p,R量表的概率密度为1/nr〜2。该幂律缩放表明特征向量误差极为异质 - 即使对于大多数特征向量的R非常小,对于其他具有不可忽视的概率的其他特征向量也可能很大。我们支持这一点,并通过数值实验进行进一步的结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号