...
首页> 外文期刊>Information and inference >Computational complexity versus statistical performance on sparse recovery problems
【24h】

Computational complexity versus statistical performance on sparse recovery problems

机译:稀疏恢复问题的计算复杂性与统计表现

获取原文
获取原文并翻译 | 示例

摘要

We show that several classical quantities controlling compressed-sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed-sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar’s condition number is a data-driven complexity measure for convex programmes, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed-sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed-sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.
机译:我们表明,控制压缩性能的几个经典数量直接匹配控制算法复杂性的经典参数。我们首先在一阶方法上描述线性收敛的重新启动方案,以解决广泛的压缩感应问题,其中最佳控制收敛速度的清晰度。我们表明,对于稀疏的恢复问题,可以将这种清晰度写成条件数,这是由真实信号稀疏性与观察矩阵可以恢复的最大信号大小之间的比率给出的。同样,Renegar的条件编号是凸面程序的数据驱动的复杂度度量,从而推广了线性系统的经典条件编号。我们表明,对于一系列广泛的压缩感应问题,对所有信号所采用的算法复杂度度量的最坏情况值与控制强大的恢复性能的观察矩阵的受限奇异值相匹配。总体而言,这意味着在两种情况下,在压缩感应问题中,单个参数直接控制计算复杂性和恢复性能。数值实验使用几种经典算法说明了这些点。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号