...
首页> 外文期刊>Chemistry Select >Oxidation Decomposition Mechanism of Fluoroethylene Carbonate-Based Electrolytes for High-Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study
【24h】

Oxidation Decomposition Mechanism of Fluoroethylene Carbonate-Based Electrolytes for High-Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study

机译:高压锂离子电池的氟乙二烯基电解质的氧化分解机制:DFT计算和实验研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The oxidative decomposition mechanism of fluoroethylene carbonate (FEC) used in high-voltage batteries is investigated by using density functional theory (DFT). Radical cation FEC~+ is formed from FEC by transferring one electron to electrode and the most likely decomposition products are CO2 and 2- fluoroacetaldehyde radical cation. Other possible products are CO, formaldehyde and formyl fluoride radical cations. These radical cations are surrounded by much FEC solvent and their radical center may attack the carbonyl carbon of FEC to form aldehyde and oligomers of alkyl carbonates, which is similar with the oxidative decomposition of EC. Then, our experimental result reveals that FEC-based electrolyte has rather high anodic stability. It can form a robust SEI film on the positive electrode surface, which can inhibit unwanted electrolyte solvent and LiPF6 salts decomposition, alleviate Mn/Ni dissolution and therefore, improve the coulombic efficiency and the cycling stability of high voltage LiNi-(0.5)Mn_(1.5)O4 positive electrodes. This work displays that FEC-based electrolyte systems have considerable potential replacement of the EC-based electrolyte for the applications in 5 V Li-ion batteries.
机译:使用密度功能理论(DFT)研究了在高压电池中使用的氟乙二烯(FEC)(FEC)的氧化分解机制。自由基阳离子FEC〜+是通过将一个电子转移到电极而形成的,最可能的分解产物是CO2和2-氟乙醛自由基阳离子。其他可能的产品是CO,甲醛和甲醛自由基阳离子。这些激进的阳离子被大量的FEC溶剂包围,其激进中心可能攻击FEC的羰基碳形成醛和烷基碳酸盐的低聚物,这与EC的氧化分解相似。然后,我们的实验结果表明,基于FEC的电解质具有较高的阳极稳定性。它可以在阳性电极表面形成强大的SEI膜,该膜可以抑制不需要的电解质溶剂和LIPF6盐分解,减轻MN/Ni溶解,因此,提高了库仑效率,并提高了高压lini-(0.5)Mn_(0.5)MN_(0.5)MN_(0.5)MN_( 1.5)O4阳性电极。这项工作表明,基于FEC的电解质系统可以在5 V Li-ION电池中使用基于EC的电解液的潜在替代。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号