...
首页> 外文期刊>Catalysis science & technology >A DRIFTS study of CO adsorption and hydrogenation on Cu-based core-shell nanoparticles
【24h】

A DRIFTS study of CO adsorption and hydrogenation on Cu-based core-shell nanoparticles

机译:对基于Cu的核壳纳米颗粒的CO吸附和氢化的漂移研究

获取原文
获取原文并翻译 | 示例
           

摘要

Core-shell nanoparticles are being considered for various applications due to their controllable atomic structure and improved properties compared to their bulk counterparts. In the present work, we have synthesized Cu@Mn3O4 and Cu@Co3O4 (core@shell) nanocatalysts using wet-chemical synthesis methods involving organic surfactants, and probed their surfaces using CO and H2 under reaction conditions using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The surfactant ligands used in the synthesis of the nanoparticles must be removed to allow access to the active catalyst sites. These ligands can be removed by oxidation, allowing adsorption of CO and H2. This work reports the DRIFTS results of CO adsorption and hydrogenation on Cu@Mn3O4 and Cu@Co3O4 nanoparticles after removing the ligands. The CO hydrogenation results were in agreement with the DRIFTS results, which suggested that the Cu@Co3O4 nanoparticles adsorb CO both dissociatively and associatively, creating a balance between molecular CO required for CO insertion and dissociated surface carbon species required for chain growth. This resulted in higher selectivities towards C~(2+) alcohols on this catalyst. On the other hand, the Cu@Mn3O4 nanoparticles showed a higher CO uptake and a lower CO dissociation activity, which resulted in a lower CH_x concentration on the surface, thus limiting the rate of the CO insertion step required to form higher alcohols.
机译:与其散装对应物相比,由于其可控的原子结构和改进的特性,正在考虑各种应用的核心纳米颗粒。在目前的工作中,我们使用涉及有机表面活性剂的湿化学合成方法合成了CU@MN3O4和CU@CO3O4(CORE@shell)纳米催化剂,并使用弥漫性反射型基础傅里叶转换光谱法使用CO和H2探测其表面和H2漂移)。必须去除合成纳米颗粒的表面活性剂配体以允许进入活性催化剂位点。这些配体可以通过氧化去除,从而使CO和H2吸附。这项工作报告了CU@MN3O4和CU@CO3O4纳米颗粒上CO吸附和氢化的结果漂移结果。 CO氢化结果与漂移结果一致,这表明CU@CO3O4纳米颗粒Adsorb CO都与众不同和联想性地,在CO插入所需的分子CO和链生长所需的分离表面碳物种之间创造了平衡。这导致对该催化剂上的C〜(2+)醇的选择性更高。另一方面,CU@MN3O4纳米颗粒显示出较高的CO摄取和较低的CO解离活动,从而导致表面上的CH_X浓度较低,从而限制了形成较高酒精所需的CO插入步骤的速率。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号