首页> 外文期刊>Catalysis science & technology >A computational DFT study of CO oxidation on a Au nanorod supported on CeO2(110): on the role of the support termination
【24h】

A computational DFT study of CO oxidation on a Au nanorod supported on CeO2(110): on the role of the support termination

机译:CEO2支持的AU纳米棒上的CO氧化计算DFT研究(110):关于支撑终止的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Possible reaction paths for CO oxidation on ceria-supported Au nanopartide catalysts were modeled by placing a Au nanorod on a CeO2(110) surface. The results are discussed against experimental and computational data in the literature for Au/CeO2 with emphasis on the role of the ceria surface termination and involvement of ceria lattice oxygen atoms. Three CO oxidation mechanisms were modeled using density functional theory calculations: (i) reaction of adsorbed CO with ceria lattice 0 atoms (Mars-van Krevelen mechanism), (2) reaction of adsorbed CO with co-adsorbed O2 (co-adsorption mechanism) and (3) dissociation of adsorbed O2 followed by CO oxidation (stepwise mechanism). All three candidate mechanisms are relevant to CO oxidation catalysis as they exhibit nearly similar overall reaction barriers. The Mars-van Krevelen mechanism is consistent with experimentalfindings on the involvement of lattice O atoms in CO oxidation. This mechanism is prohibitive for CeO2(111) because of too high oxygen vacancy formation energy. Besides, the specific surface termination of CeO2(111) prevents O2 adsorption at its interface with Au due to repulsive interactions with the lattice O atoms. Molecular O2 adsorption is possible on CeO2(110) because of the presence of Ce~(4+) ions in the top layer of the surface. O2 adsorption can occur on a defective Au/CeO2(111) surface (J. Am. Chem. Soc, 2012, 134, 1560), because exposed Ce~(3+) ions are available. However, it is established here that O2 dissociation will heal the vacancies and deactivate Au supported on the CeO2(111) surface. The importance of Mars-van Krevelen and stepwise mechanisms in CO oxidation by Au/CeO2 strongly depends on the surface plane of the ceria support.
机译:通过将AU纳米棒放置在CEO2(110)表面上,对二氧化碳纳米催化剂的CO氧化的可能反应路径进行建模。对AU/CEO2文献中的实验和计算数据进行了讨论,重点是陶瓷表面终止和陶瓷晶状体氧原子的作用。使用密度功能理论计算对三种CO氧化机制进行了建模:(i)吸附CO与陶瓷晶格0原子(Mars-Van Krevelen机制)的反应,(2)吸附CO与共同吸附的O2(CO-ADSORPONTING机制)的反应(3)吸附的O2的解离,然后分解CO氧化(逐步机理)。所有三种候选机制都与CO氧化催化有关,因为它们表现出几乎相似的总体反应屏障。 Mars-Van Krevelen机制与有关晶格O原子参与CO氧化的实验发现是一致的。由于氧气空位的形成太高,因此对CEO2(111)的机制对CEO2(111)非常有用。此外,由于与晶格O原子的排斥相互作用,CEO2(111)的特定表面终止可阻止O2与AU的界面吸附。由于表面顶层中存在CE〜(4+)离子,因此CEO2(110)上可能会吸附分子O2。 O2吸附可能发生在有缺陷的AU/CEO2(111)表面上(J.Am。Chem。Soc,2012,134,1560),因为可用的CE〜(3+)离子可用。但是,在这里确定O2解离将治愈空缺并停用在CEO2(111)表面上支持的AU。 MAU/CEO2在CO氧化中的Mars-Van Krevelen和逐步机理的重要性很大程度上取决于二氧化碳载体的表面平面。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号