...
首页> 外文期刊>Emerging Topics in Life Sciences >Epigenetic features in regulation of telomeres and telomerase in stem cells
【24h】

Epigenetic features in regulation of telomeres and telomerase in stem cells

机译:干细胞中端粒和端粒酶调节的表观遗传特征

获取原文
获取原文并翻译 | 示例

摘要

The epigenetic nature of telomeres is still controversial and different human cell lines might show diverse histone marks at telomeres. Epigenetic modifications regulate telomere length and telomerase activity that influence telomere structure and maintenance. Telomerase is responsible for telomere elongation and maintenance and is minimally composed of the catalytic protein component, telomerase reverse transcriptase (TERT) and template forming RNA component, telomerase RNA (TERC). TERT promoter mutations may underpin some telomerase activation but regulation of the gene is not completely understood due to the complex interplay of epigenetic, transcriptional, and posttranscriptional modifications. Pluripotent stem cells (PSCs) can maintain an indefinite, immortal, proliferation potential through their endogenous telomerase activity, maintenance of telomere length, and a bypass of replicative senescence in vitro . Differentiation of PSCs results in silencing of the TERT gene and an overall reversion to a mortal, somatic cell phenotype. The precise mechanisms for this controlled transcriptional silencing are complex. Promoter methylation has been suggested to be associated with epigenetic control of telomerase regulation which presents an important prospect for understanding cancer and stem cell biology. Control of down-regulation of telomerase during differentiation of PSCs provides a convenient model for the study of its endogenous regulation. Telomerase reactivation has the potential to reverse tissue degeneration, drive repair, and form a component of future tissue engineering strategies. Taken together it becomes clear that PSCs provide a unique system to understand telomerase regulation fully and drive this knowledge forward into aging and therapeutic application.
机译:端粒的表观遗传性仍然存在争议,不同的人类细胞系可能显示端粒的各种组蛋白标记。表观遗传修饰调节影响端粒结构和维持的端粒长度和端粒酶活性。端粒酶负责端粒伸长和维护,最小化由催化蛋白成分,端粒酶逆转录酶(TERT)(TERT)和模板形成RNA成分,端粒酶RNA(TERC)组成。 TERT启动子突变可能是一些端粒酶激活的基础,但是由于表观遗传,转录和转录后修饰的复杂相互作用,基因的调节尚未完全理解。多能干细胞(PSC)可以通过内源性端粒酶活性,端粒长度的维持和体外复制性衰老的旁路来维持不确定的,不朽的增殖潜力。 PSC的分化导致TERT基因的沉默和整体逆转为致命的体细胞表型。这种受控的转录沉默的精确机制很复杂。启动子甲基化已被认为与端粒酶调节的表观遗传控制有关,这是理解癌症和干细胞生物学的重要前景。控制PSC分化过程中端粒酶下调的控制为研究其内源性调节提供了方便的模型。端粒酶重新激活有可能逆转组织变性,驱动修复并形成未来组织工程策略的组成部分。综上所述,很明显,PSC提供了一个独特的系统,可以完全了解端粒酶调节,并将这些知识推向衰老和治疗应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号