首页> 外文期刊>Chemistry Select >A Facile One-Pot Hydrothermal Synthesis of Zn, Mn Co- Doped NiCo2O4 as an Efficient Electrode for Supercapacitor Applications
【24h】

A Facile One-Pot Hydrothermal Synthesis of Zn, Mn Co- Doped NiCo2O4 as an Efficient Electrode for Supercapacitor Applications

机译:Zn的轻巧的单锅热液合成,Mn将NICO2O4共同作为超级电容器应用的有效电极

获取原文
获取原文并翻译 | 示例
           

摘要

A high electrochemical performance and cost effective solid state NiCo2O4 material was synthesized by hydrothermal method. The performance of the supercapacitor material was investigated by incorporating the zinc and manganese in the crystal structure of NiCo2O4. The structure and morphology were confirmed by X-ray diffraction (XRD) pattern and Field Emission Scanning Electron Microscope (FE-SEM), and High Resolution Transmission Electron Microscope (HR-TEM). The optical absorption spectra of the pure and co-doped NiCo2O4 were investigated by UV-Vis analysis and the bandgap energy was found to be 4.38 and 2.98 eV respectively. Photoluminescence spectra (PL) reveal the blue and green emission peaks were found at 364, 376 and 488 nm respectively. The pore size and surface area of Mn, Zn co-doped NiCo2O4 was evaluated by Brunauer -Emmett –Teller analysis (BET). The cyclic voltammetry (CV) reveals the faradaic reaction of the pure and co-doped NiCo2O4 with excellent reversibility at higher scan rates. The maximum specific capacitance for pure and co-doped NiCo2O4 nanoparticles (NPs) was achieved as 158.6 and 513.17 Fg~(-1) respectively. Further, the electrochemical impedance spectroscopy (EIS) and galvanostatic charge discharge (GCD) were performed to identify the resistance and rate capability of the electrode materials. The cyclic stability of pure and Zn, Mn co-doped NiCo2O4 was found to be 90.8% and 95.07% respectively for 3000 Cycles. The Zn, Mn co-doped NiCo2O4 can be used as an excellent electrode for supercapacitor applications.
机译:通过水热法合成了高的电化学性能和成本效益的固态NICO2O4材料。通过将锌和锰掺入NICO2O4的晶体结构中,研究了超级电容器材料的性能。结构和形态通过X射线衍射(XRD)模式和场发射扫描电子显微镜(FE-SEM)和高分辨率透射电子显微镜(HR-TEM)证实。通过UV-VIS分析研究了纯和共掺杂的NICO2O4的光吸收光谱,发现带隙能分别为4.38和2.98 eV。光致发光光谱(PL)揭示了在364、376和488 nm处发现蓝色和绿色发射峰。 MN的孔径和表面积,Zn共掺杂的NICO2O4通过Brunauer -emmett - Teller Analysis(BET)评估。环状伏安法(CV)揭示了纯和共掺杂的NICO2O4的法拉达反应,并在较高的扫描速率下具有出色的可逆性。纯和共掺杂的NICO2O4纳米颗粒(NP)的最大比电容分别为158.6和513.17 fg〜(-1)。此外,进行了电化学阻抗光谱(EIS)和电静脉电荷放电(GCD),以识别电极材料的电阻和速率能力。发现3000个周期的纯和Zn的循环稳定性分别为90.8%和95.07%。 Zn,MN共掺杂的NICO2O4可以用作超级电容器应用的出色电极。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号