...
首页> 外文期刊>Nanoscale >Ultra-high light confinement and ultra-long propagation distance design for integratable optical chips based on plasmonic technology
【24h】

Ultra-high light confinement and ultra-long propagation distance design for integratable optical chips based on plasmonic technology

机译:基于等离子技术的可集成光学芯片的超高光限制和超长传播距离设计

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing demand for faster speed, broader bandwidth, and lower energy consumption of on-chip processing has motivated the use of light instead of electrons in functional communication components. However, considerable scattering loss severely affects the performance of nanoscale photonic devices when their physical sizes are smaller than the wavelength of light. Due to the tight localization of electromagnetic energy, plasmonic waveguides that work at visible and infrared wavebands have provided a solution for the optical diffraction limit problem and thus enable downscaling of optical circuits and chips at the nanoscale. However, due to the fundamental trade-off between propagation distance and light confinement, plasmonic waveguides, including conventional hybrid plasmonic waveguides (HPWGs), cannot be used as high performance integratable optical devices all the time. To solve this problem, a novel hybrid plasmonic waveguide is proposed where a hybrid metal-ridge-slot structure based on a two-dimensional (2D) transition metal dichalcogenide is embedded into two identical cylindrical dielectric waveguides. Benefiting from both the loss-less slot region and the high-index difference between the ultra-thin 2D material and the slot region, a 10 times longer propagation length and 100 times smaller mode area than the traditional HPWG are achieved at the telecommunication band. By removing the monolayer transition metal dichalcogenide, our designed waveguide shows a higher propagation length that is at least two orders of magnitude larger than its traditional HPWG counterpart. Therefore, the proposed hybridization waveguiding approach paves the way toward truly high-performance and deep-subwavelength integratable optical circuits and chips in the future.
机译:对更快的速度,更广泛的带宽和较低的芯片处理能源消耗的需求不断增加,这激发了光而不是电子在功能通信组件中的使用。然而,当其物理大小小于光波长时,大量散射损失会严重影响纳米级光子设备的性能。由于电磁能的紧密定位,在可见和红外波带上工作的等离子波导为光学衍射极限问题提供了解决方案,因此可以降低纳米级的光电和芯片的降低。然而,由于传播距离和光限制之间的基本权衡,等离激氧化波导(包括常规混合等离激元波导(HPWG))不能一直用作高性能集成的光学设备。为了解决这个问题,提出了一种新型的杂化等离子波导,其中将基于二维(2D)过渡金属二色源的杂化金属式插槽结构嵌入两个相同的圆柱介电介电性波。从无损耗的老虎机区域和超薄2D材料和插槽区域之间的高指数差异中受益,在电信频段中实现了比传统HPWG的10倍长10倍,而模式小的100倍。通过删除单层过渡金属二进制基因,我们设计的波导显示出更高的传播长度,至少比传统的HPWG对应物大两个数量级。因此,提出的杂交波导方法为将来的真正高性能和深波长度集成电路和芯片铺平了道路。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号