首页> 外文期刊>Nanoscale >Graphitic carbon nitride based nanocomposites: a review
【24h】

Graphitic carbon nitride based nanocomposites: a review

机译:基于硝酸石墨碳的纳米复合材料:综述

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.
机译:石墨氮化碳(G-C3N4)作为一种有趣的土壤可见光光催化剂,具有独特的二维结构,出色的化学稳定性和可调电子结构。纯G-C3N4遭受光生成电子孔对的快速重组,导致光催化活性低。由于具有独特的电子结构,G-C3N4可以作为与各种功能材料耦合以增强性能的重要候选者。根据光催化机制和过程的差异,可以对基于G-C3N4的纳米复合材料的六个主要系统进行分类和总结:即,基于G-C3N4的无金属异质结,G-C3N4/单一金属氧化物(金属硫化物) )杂结,G-C3N4/复合氧化物,G-C3N4/HALIDE异质结,G-C3N4/Noble Metal Metal Orostructures和G-C3N4基于G-C3N4的复杂系统。除了描述制造方法,基于G-C3N4的纳米复合材料的异质结构和多功能应用外,我们还强调并详细介绍了基于G-C3N4的纳米复合材料的光催化活性增强的基本机制。 P-N连接(半导体/半导体异质结构),Schottky连接(金属/半导体异质结构),表面等离子体共振(SPR)效应,光敏,超导导等的独特功能。此外,基于G-C3N4的纳米复合材料的增强性能已被广泛用于环境和能量应用中,例如污染物的光催化降解,光催化氢的产生,二氧化碳还原,消毒,消毒和超级电容器。这项关键评论以摘要和一些关于探索基于G-C3N4的高级纳米材料所面临的挑战和新方向的看法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号