首页> 外文期刊>Annual Review of Earth and Planetary Sciences >From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle
【24h】

From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

机译:从地震和地震断层滑动的大地成像到地震周期的动态建模

获取原文
获取原文并翻译 | 示例
       

摘要

dUnderstanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum-magnitude earthquake based on the requirement that seismic and aseismic slip sum tomatch long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.
机译:d了解地震和地震断层的划分对于地震构造学至关重要,因为它最终决定了断层的地震潜力。由于构造大地测量学的进步,现在有可能开发出地震周期内滑动时空演化的运动学模型,并确定地震和抗震滑动的预算。对俯冲带和大陆性断层的研究表明,在地震发生深度范围内,地震蠕变是普遍的,有时是普遍的。通常观察到震间耦合在空间上是异质的,从而定义了应力积累的锁定斑块,这些应力斑块将在未来的地震或地震瞬变中释放,并被蠕变区域包围。富含粘土的构造体,高温和较高的孔隙流体压力似乎是促进抗震蠕变的关键因素。滑移后断层的一般对数时间演化是蠕动断层的显着特征,这表明断层摩擦对滑移率的对数依赖性,如在实验室摩擦实验中观察到的。可以认为大多数断层都是由交错的斑块铺砌的,摩擦规律要么是加强速率,抑制地震破裂的传播,要么是减弱速率,从而使地震成核。减弱速率的斑块是在地震期间应力积累的粗糙。他们可能会以各种方式集体破裂。基于地震和地震滑动总和要匹配长期滑动的要求,震间耦合的模式可以帮助限制最大震级的返回周期。可以对基于此概念模型的地震周期动态模型进行调整,以重现大地测量和地震观测。讨论了使用此类模型评估地震危害的希望和陷阱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号