...
【24h】

DNA mechanics.

机译:DNA力学。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We review the history of DNA mechanics and its analysis. We evaluate several methods to analyze the structures of superhelical DNA molecules, each predicated on the assumption that DNA can be modeled with reasonable accuracy as an extended, linearly elastic polymer. Three main approaches are considered: mechanical equilibrium methods, which seek to compute minimum energy conformations of topologically constrained molecules; statistical mechanical methods, which seek to compute the Boltzmann distribution of equilibrium conformations that arise in a finite temperature environment; and dynamic methods, which seek to compute deterministic trajectories of the helix axis by solving equations of motion. When these methods include forces of self-contact, which prevent strand passage and preserve the topological constraint, each predicts plectonemically interwound structures. On the other hand, the extent to which these mechanical methods reliably predict energetic and thermodynamic properties of superhelical molecules is limited, in part because of their inability to account explicitly for interactions involving solvent. Monte Carlo methods predict the entropy associated with supercoiling to be negative, in conflict with a body of experimental evidence that finds it is large and positive, as would be the case if superhelical deformations significantly disrupt the ordering of ambient solvent molecules. This suggests that the large-scale conformational properties predicted by elastomechanical models are not the only ones determining the energetics and thermodynamics of supercoiling. Moreover, because all such models that preserve the topological constraint correctly predict plectonemic interwinding, despite these and other limitations, this constraint evidently dominates energetic and thermodynamic factors in determining supercoil geometry. Therefore, agreement between predicted structures and structures obtained experimentally, for example, by electron microscopy, does not in itself provide evidence for the correctness or completeness of any given model of DNA mechanics.
机译:我们回顾了DNA力学的历史及其分析。我们评估了几种分析超螺旋DNA分子结构的方法,每种方法均基于这样的假设,即可以以合理的精度将DNA建模为扩展的线性弹性聚合物。考虑了三种主要方法:机械平衡方法,力求计算拓扑约束分子的最小能量构象;统计力学方法,旨在计算在有限温度环境下出现的平衡构象的玻耳兹曼分布;以及动态方法,旨在通过求解运动方程来计算螺旋轴的确定性轨迹。当这些方法包括自接触力(可防止钢绞线通过并保留拓扑约束)时,每种方法都可以预测出声波缠绕的结构。另一方面,这些机械方法可靠地预测超螺旋分子的能量和热力学性质的程度受到限制,部分原因是它们无法明确说明涉及溶剂的相互作用。蒙特卡罗方法预测与超螺旋相关的熵为负,这与大量的实验证据发现该熵大且为正相矛盾,例如超螺旋形变形会显着破坏周围溶剂分子的排列。这表明,由弹性力学模型预测的大规模构象特性并不是决定超螺旋的能级和热力学的唯一条件。此外,由于所有这些保留拓扑约束的模型都可以正确预测发声交缠,尽管存在这些和其他限制,所以在确定超螺旋几何形状时,该约束显然支配了能量和热力学因素。因此,预测结构与通过实验(例如通过电子显微镜)获得的结构之间的一致性本身并不能为任何给定的DNA力学模型的正确性或完整性提供证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号