...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >Muscarinic Receptors, from Synaptic Plasticity to its Role in Network Activity
【24h】

Muscarinic Receptors, from Synaptic Plasticity to its Role in Network Activity

机译:肌肉蛋白受体,从突触可塑性到其在网络活动中的作用

获取原文
获取原文并翻译 | 示例

摘要

Acetylcholine acting via metabotropic receptors plays a key role in learning and memory by regulating synaptic plasticity and circuit activity. However, a recent overall view of the effects of muscarinic acetylcholine receptors (mAChRs) on excitatory and inhibitory long-term synaptic plasticity and on circuit activity is lacking. This review focusses on specific aspects of the regulation of synaptic plasticity and circuit activity by mAChRs in the hippocampus and cortex. Acetylcholine increases the excitability of pyramidal neurons, facilitating the generation of dendritic Ca2+-spikes, NMDA-spikes and action potential bursts which provide the main source of Ca2+ influx necessary to induce synaptic plasticity. The activation of mAChRs induced Ca2+ release from intracellular IP3-sensitive stores is a major player in the induction of a NMDA independent long-term potentiation (LTP) caused by an increased expression of AMPA receptors in hippocampal pyramidal neuron dendritic spines. In the neocortex, activation of mAChRs also induces a long-term enhancement of excitatory postsynaptic currents. In addition to effects on excitatory synapses, a single brief activation of mAChRs together with short repeated membrane depolarization can induce a long-term enhancement of GABA A type (GABA(A)) inhibition through an increased expression of GABA(A) receptors in hippocampal pyramidal neurons. By contrast, a long term depression of GABA(A) inhibition (iLTD) is induced by muscarinic receptor activation in the absence of postsynaptic depolarizations. This iLTD is caused by an endocannabinoid-mediated presynaptic inhibition that reduces the GABA release probability at the terminals of inhibitory interneurons. This bidirectional long-term plasticity of inhibition may dynamically regulate the excitatory/inhibitory balance depending on the quiescent or active state of the postsynaptic pyramidal neurons. Therefore, acetylcholine can induce varied effects on neuronal activity and circuit behavior that can enhance sensory detection and processing through the modification of circuit activity leading to learning, memory and behavior. This article is part of a Special Issue entitled: Metabotropic Regulation of Synaptic Plasticity. (c) 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
机译:乙酰胆碱通过代谢受体发挥作用,通过调节突触可塑性和回路活动在学习和记忆中发挥关键作用。然而,关于毒蕈碱乙酰胆碱受体(MACHR)对兴奋性和抑制性长期突触可塑性以及对回路活动的影响,目前缺乏全面的看法。本文综述了mAChRs在海马和皮质调节突触可塑性和回路活动的具体方面。乙酰胆碱增加锥体神经元的兴奋性,促进树突状Ca2+峰、NMDA峰和动作电位爆发的产生,这些是诱导突触可塑性所必需的Ca2+内流的主要来源。mAChRs诱导的Ca2+从细胞内IP3敏感储存库释放的激活是诱导NMDA非依赖性长时程增强(LTP)的主要因素,LTP是由海马锥体神经元树突棘中AMPA受体表达增加引起的。在新皮质,mAChRs的激活也会导致兴奋性突触后电流的长期增强。除了对兴奋性突触的影响外,mAChRs的一次短暂激活以及短暂重复的膜去极化可通过增加海马锥体神经元中GABA(a)受体的表达,诱导GABA a型(GABA(a))抑制的长期增强。相比之下,GABA(a)抑制(iLTD)的长期抑制是在没有突触后去极化的情况下由毒蕈碱受体激活引起的。这种iLTD是由内源性大麻素介导的突触前抑制引起的,这种抑制降低了抑制性中间神经元末端GABA释放的可能性。这种抑制的双向长期可塑性可根据突触后锥体神经元的静止或活动状态动态调节兴奋/抑制平衡。因此,乙酰胆碱可以诱导神经元活动和回路行为产生不同的影响,通过改变回路活动导致学习、记忆和行为,从而增强感觉检测和处理能力。这篇文章是特刊《突触可塑性的代谢调节》的一部分。(c) 2020年伊布罗。爱思唯尔有限公司出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号