首页> 外文期刊>Nanotechnology >Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect
【24h】

Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect

机译:压电效应影响的单ZnO纳米线的非线性纳米级压电响应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Zinc oxide (ZnO) nanowires (NWs) as semiconductor piezoelectric nanostructures have emerged as material of interest for applications in energy harvesting, photonics, sensing, biomedical science, actuators or spintronics. The expression for the piezoelectric properties in semiconductor materials is concealed by the screening effect of the available carriers and the piezotronic effect, leading to complex nanoscale piezoresponse signals. Here, we have developed a metal-semiconductor-metal model to simulate the piezoresponse of single ZnO NWs, demonstrating that the apparent non-linearity in the piezoelectric coefficient arises from the asymmetry created by the forward and reversed biased Schottky barriers at the semiconductor-metal junctions. By directly measuring the experimentalI-Vcharacteristics of ZnO NWs with conductive atomic force microscope together with the piezoelectric vertical coefficient by piezoresponse force microscopy, and comparing them with the numerical calculations for our model, effective piezoelectric coefficients in the ranged(33eff)similar to 8.6 pm V-1-12.3 pm V(-1)have been extracted for ZnO NWs. We have further demonstrated via simulations the dependence between the effective piezoelectric coefficientd(33eff)and the geometry and physical dimensions of the NW (radius to length ratio), revealing that the higherd(33eff)is obtained for thin and long NWs due to the tensor nature proportionality between electric fields and deformation in NW geometries. Moreover, the non-linearity of the piezoresponse also leads to multiharmonic electromechanical response observed at the second and higher harmonics that indeed is not restricted to piezoelectric semiconductor materials but can be generalized to any type of asymmetric voltage drops on a piezoelectric structure as well as leaky wide band-gap semiconductor ferroelectrics.
机译:氧化锌(ZnO)纳米线(NWs)作为半导体压电纳米结构,已成为能量收集、光子学、传感、生物医学、致动器或自旋电子学等领域的重要应用材料。半导体材料中的压电特性表达式被可用载流子的屏蔽效应和压电效应所掩盖,从而产生复杂的纳米级压电响应信号。在这里,我们开发了一个金属-半导体-金属模型来模拟单个ZnO纳米线的压电响应,证明压电系数中的明显非线性源于半导体-金属结处正向和反向偏置肖特基势垒产生的不对称性。通过使用导电原子力显微镜直接测量ZnO纳米线的实验特性,以及使用压电响应力显微镜测量的压电垂直系数,并将其与我们模型的数值计算进行比较,提取出了ZnO纳米线的有效压电系数,其范围(33eff)与8.6 pm V-1-12.3 pm V(-1)相似。我们通过模拟进一步证明了有效压电系数D(33eff)与NW的几何和物理尺寸(半径与长度之比)之间的依赖性,揭示了由于NW几何中电场和变形之间的张量性质比例关系,对于薄NW和长NW获得了较高的压电系数D(33eff)。此外,压电响应的非线性还导致在二次谐波和高次谐波处观察到的多谐机电响应,这实际上并不局限于压电半导体材料,而是可以推广到压电结构上的任何类型的不对称压降,以及泄漏的宽带隙半导体铁电体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号