...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen
【24h】

Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen

机译:Cu2Se / Co3Se4多价杂纳米晶体的界面工程,用于节能电催化的增值化学品和氢气的能量效率

获取原文
获取原文并翻译 | 示例
           

摘要

Integrating organic upgrading and hydrogen electrolysis is recently regarded as a win-win strategy. However, it is still challenging to construct efficient robust electrocatalysts to considerably minimize their energy demand for such coupled reaction and simultaneously avoid the emission of environment-unfriendly CO2. Herein, the Cu2Se/ Co3Se4 multivalent hetero-nanocrystals (CuCoSe-HNCs) are fabricated as efficient electrocatalysts through interfacial engineering, thus constructing abundant hetero-junctions on monodispersed CuCoSe-HNCs and facilitating the charge transfer at Cu-Se-Co hetero-interfaces. DFT studies reveal the multivalent CuCoSe-HNCs with hydroxylated surfaces, which possess complex species (Cu*-OOH, Co*-OOH, and SeOx) as synergistic active centers, thus effectively optimizing the surface adsorption/dissociation performance and suppress excessive oxidation to CO2. Hence, the methanol upgrading conversion to value-added formate is achieved at much low working potential (1.11V) with high faradaic efficiency (>98 %) and without CO2 emission, thus considerably decreasing the energy consumption for generating the only gas product of pure hydrogen.
机译:将有机升级和氢电解结合起来最近被认为是一种双赢战略。然而,如何构建高效、稳定的电催化剂,以最大限度地减少此类偶联反应的能量需求,同时避免不利于环境的二氧化碳排放,仍然是一个挑战。在此,通过界面工程制备了Cu2Se/Co3Se4多价异质纳米晶体(CuCoSe-HNC),作为高效的电催化剂,从而在单分散的CuCoSe-HNC上构建了丰富的异质结,并促进了Cu-Se-Co异质界面上的电荷转移。DFT研究揭示了具有羟基化表面的多价CuCoSe HNC,其具有复杂物种(Cu*-OOH、Co*-OOH和SeOx)作为协同活性中心,从而有效地优化了表面吸附/解离性能并抑制过度氧化为CO2。因此,在极低的工作电位(1.11V)、较高的法拉第效率(>98%)和无二氧化碳排放的情况下,甲醇升级转化为增值甲酸盐,从而大大降低了产生纯氢唯一气体产品的能耗。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号