首页> 外文期刊>ACS applied materials & interfaces >Dimensionality Control of SnO2 Films for Hysteresis-Free, All-Inorganic CsPbBr3 Perovskite Solar Cells with Efficiency Exceeding 10%
【24h】

Dimensionality Control of SnO2 Films for Hysteresis-Free, All-Inorganic CsPbBr3 Perovskite Solar Cells with Efficiency Exceeding 10%

机译:SnO2薄膜的维度控制,无滞后,全无机CSPBBR3钙钛矿太阳能电池效率超过10%

获取原文
获取原文并翻译 | 示例
       

摘要

The all-inorganic cesium lead bromide (CsPbBr_(3)) perovskite solar cells (PSCs) have attracted considerable interest because of their outstanding environmental stability and low manufacturing cost. However, the state-of-the-art mesoscopic titanium dioxide (TiO_(2)) electron-transporting layers (ETLs) always present low electron mobility, are destructive to perovskites under ultraviolet light illumination, as well as possess high sintering temperature. Nanostructured tin dioxide (SnO_(2)) is a promising electron-transporting material for high-efficiency PSCs due to matching energy-level alignment with the perovskite layer, improved optical transparency, high electron mobility, excellent photostability, and low-temperature processing. Furthermore, rapid but poorly controlled perovskite crystallization makes it difficult to scale up planar PSCs for industrial applications. To address this issue, we adopt a dimensional SnO_(2) ETL to change the surface wettability for uniform perovskite coverage over large areas and the growth of large-sized CsPbBr_(3) grains, resulting in a maximum grain size of 1.65 μm. Moreover, the dimensional SnO_(2) ETL could increase the interfacial contact area between the CsPbBr_(3) layer and the ETL and enhance the electronic contact for efficient electron extraction to suppress or to eliminate the notorious hysteresis behavior. As expected, a power conversion efficiency (PCE) of 9.51% with an almost hysteresis-free phenomenon is achieved through dimensionality control of SnO_(2) films attributed to the remarkably enhanced light harvesting, accelerated electron extraction, diminished defect density, and reduced charge recombination. Upon further interfacial modification with graphene quantum dots (GQDs), the PSC based on the two-dimensional SnO_(2) ETL achieves a champion PCE of 10.34% due to the improved energy-level alignment at the device interface. Moreover, the best all-inorganic CsPbBr_(3) PSC free of encapsulation retains 93% of initial efficiency over 10 days at 80% relative humidity. This work provides an effective dimensionality control strategy for optimized charge transportation and enlarged perovskite grain size to make stable and efficient all-inorganic CsPbBr_(3) PSCs.
机译:全无机溴化铯铅(CsPbBr_3))钙钛矿型太阳能电池(PSC)因其优异的环境稳定性和较低的制造成本而引起了人们的极大兴趣。然而,最先进的介观二氧化钛(TiO_2))电子传输层(ETL)总是呈现低电子迁移率,在紫外光照射下破坏钙钛矿,并且具有较高的烧结温度。纳米结构二氧化锡(SnO_2))由于与钙钛矿层匹配能级排列、提高光学透明度、高电子迁移率、优异的光稳定性和低温处理,是一种很有前途的高效PSC电子传输材料。此外,钙钛矿结晶速度快但控制不好,因此很难将平面PSC扩大到工业应用中。为了解决这个问题,我们采用了尺寸SnO_2ETL来改变表面润湿性,以在大面积上均匀覆盖钙钛矿,并生长大尺寸CsPbBr_3晶粒,从而使最大晶粒尺寸达到1.65μm。此外,尺寸SnO_2ETL可以增加CsPbBr_3层和ETL之间的界面接触面积,增强电子接触,从而有效地提取电子,抑制或消除臭名昭著的滞后行为。正如预期的那样,通过对SnO_2薄膜的尺寸控制,可以实现9.51%的功率转换效率(PCE),几乎没有滞后现象,这归因于显著增强的光收集、加速的电子提取、减少的缺陷密度和减少的电荷复合。在使用石墨烯量子点(GQD)进行进一步界面修饰后,基于二维SnO_2ETL的PSC由于在器件界面处改进了能级对准,实现了10.34%的最佳PCE。此外,在80%的相对湿度下,无封装的最佳全无机CsPbBr_3PSC在10天内保持93%的初始效率。这项工作为优化电荷输运和扩大钙钛矿晶粒尺寸提供了有效的维度控制策略,以制备稳定高效的全无机CsPbBr_3PSC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号