首页> 外文期刊>ACS applied materials & interfaces >Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling
【24h】

Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling

机译:微管表面,用于同时提高池中效率和临界热通量

获取原文
获取原文并翻译 | 示例
           

摘要

Boiling is an essential process in numerous applications including power plants, thermal management, water purification, and steam generation. Previous studies have shown that surfaces with microcavities or biphilic wettability can enhance the efficiency of boiling heat transfer, that is, the heat transfer coefficient (HTC). Surfaces with permeable structures such as micropillar arrays, in contrast, have shown significant enhancement of the critical heat flux (CHF). In this work, we investigated microtube structures, where a cavity is defined at the center of a pillar, as structural building blocks to enhance HTC and CHF simultaneously in a controllable manner. We demonstrated simultaneous CHF and HTC enhancements of up to 62 and 244%, respectively, compared to those of a smooth surface. The experimental data along with high-speed images elucidate the mechanism for simultaneous enhancement where bubble nucleation occurs in the microtube cavities for increased HTC and microlayer evaporation occurs around microtube sidewalls for increased CHF. Furthermore, we combined micropillars and microtubes to create surfaces that further increased CHF by achieving a path to separate nucleating bubbles and rewetting liquids. This work provides guidelines for the systematic surface design for boiling heat transfer enhancement and has important implications for understanding boiling heat transfer mechanisms.
机译:沸腾是许多应用中的一个基本过程,包括发电厂、热管理、水净化和蒸汽产生。以往的研究表明,具有微腔或双亲润湿性的表面可以提高沸腾传热效率,即传热系数(HTC)。相比之下,具有可渗透结构的表面,如微柱阵列,显示出临界热流(CHF)的显著增强。在这项工作中,我们研究了微管结构,其中在柱的中心定义了一个空腔,作为以可控方式同时增强HTC和CHF的结构构建块。我们证明,与光滑表面相比,CHF和HTC同时增强,分别高达62%和244%。实验数据和高速图像阐明了同时增强的机制,即气泡形核发生在微管腔中,以增加HTC,微层蒸发发生在微管侧壁周围,以增加CHF。此外,我们将微柱和微管结合起来,通过实现分离成核气泡和重新润湿液体的路径,创造出进一步增加CHF的表面。这项工作为强化沸腾传热的系统表面设计提供了指导,并对理解沸腾传热机理具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号