首页> 外文期刊>ACS applied materials & interfaces >Metal Reaction-Induced Bulk-Doping Effect in Forming Conductive Source-Drain Regions of Self-Aligned Top-Gate Amorphous InGaZnO Thin-Film Transistors
【24h】

Metal Reaction-Induced Bulk-Doping Effect in Forming Conductive Source-Drain Regions of Self-Aligned Top-Gate Amorphous InGaZnO Thin-Film Transistors

机译:金属反应诱导的自对准顶栅无定形Imazno薄膜晶体管形成导电源 - 漏区的散装效应

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, the aluminum (Al) treatment-induced doping effect on the formation of conductive source-drain (SD) regions of self-aligned top-gate (SATG) amorphous indium gallium zinc oxide (a-InGaZnO or a-IGZO) thin-film transistors (TFTs) is systematically investigated. Average carrier concentration over 1 × 10~(20) cm~(–3) and sheet resistance of around 500 Ω/sq result from the Al reaction doping. It is shown that the doping effect is of bulk despite the treatment at the surface. The doping process is disclosed to be a chemical oxidation–reduction reaction, that generates defects of oxygen vacancies and metal interstitials at the metal/a-IGZO interface. Both the generated oxygen vacancies and metal interstitials act as shallow donors, and the oxygen vacancies diffuse rapidly, leading to the bulk-doping effect. The fabricated SATG a-IGZO TFTs with the Al reaction-doped SD regions exhibit both high performance and excellent stability, featuring a low width-normalized SD resistance of about 10 Ω cm, a decent saturation mobility of 13 cm~(2)/(V s), an off current below 1 × 10~(–13) A, a threshold voltage of 0.5 V, a slight hysteresis of ?0.02 V, and a less than 0.1 V threshold voltage shift under 30 V gate bias stresses for 2000 s.
机译:本文系统地研究了自对准顶栅(SATG)非晶铟镓氧化锌(a-InGaZnO或a-IGZO)薄膜晶体管(TFT)中铝(Al)处理诱导的掺杂对导电源漏(SD)区形成的影响。Al反应掺杂导致平均载流子浓度超过1×10~(20)cm~(-3),片电阻约为500Ω/sq。结果表明,尽管在表面进行了处理,掺杂效应仍然是块状的。掺杂过程是一种化学氧化还原反应,在金属/a-IGZO界面上产生氧空位和金属间隙缺陷。生成的氧空位和金属间隙都是浅施主,氧空位迅速扩散,导致体掺杂效应。所制备的掺铝反应SD区的SATG a-IGZO TFT具有高性能和良好的稳定性,具有约10Ωcm的低宽度标准化SD电阻、13cm~(2)/(VS)的良好饱和迁移率、低于1×10~(-13)a的关断电流、0.5V的阈值电压、轻微的滞后?在30V栅极偏置应力下,阈值电压漂移小于0.1V,持续2000s。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号