首页> 外文期刊>Journal of tissue engineering and regenerative medicine >Mechanical stimulation enhances development of scaffold-free, 3D-printed, engineered heart tissue grafts
【24h】

Mechanical stimulation enhances development of scaffold-free, 3D-printed, engineered heart tissue grafts

机译:机械刺激增强了无支腿,3D印刷的设计心脏组织移植物的开发

获取原文
获取原文并翻译 | 示例
           

摘要

Current efforts to engineer a clinically relevant tissue graft from human-induced pluripotent stem cells (hiPSCs) have relied on the addition or utilization of external scaffolding material. However, any imbalance in the interactions between embedded cells and their surroundings may hinder the success of the resulting tissue graft. Therefore, the goal of our study was to create scaffold-free, 3D-printed cardiac tissue grafts from hiPSC-derived cardiomyocytes (CMs), and to evaluate whether or not mechanical stimulation would result in improved graft maturation. To explore this, we used a 3D bioprinter to produce scaffold-free cardiac tissue grafts from hiPSC-derived CM cell spheroids. Static mechanical stretching of these grafts significantly increased sarcomere length compared to unstimulated free-floating tissues, as determined by immunofluorescent image analysis. Stretched tissue was found to have decreased elastic modulus, increased maximal contractile force, and increased alignment of formed extracellular matrix, as expected in a functionally maturing tissue graft. Additionally, stretched tissues had upregulated expression of cardiac-specific gene transcripts, consistent with increased cardiac-like cellular identity. Finally, analysis of extracellular matrix organization in stretched grafts suggests improved remodeling by embedded cardiac fibroblasts. Taken together, our results suggest that mechanical stretching stimulates hiPSC-derived CMs in a 3D-printed, scaffold-free tissue graft to develop mature cardiac material structuring and cellular fates. Our work highlights the critical role of mechanical conditioning as an important engineering strategy toward developing clinically applicable, scaffold-free human cardiac tissue grafts.
机译:目前,从人类诱导多能干细胞(hiPSCs)中构建临床相关组织移植物的努力依赖于添加或利用外部支架材料。然而,嵌入细胞与其周围环境之间相互作用的任何不平衡都可能阻碍最终组织移植的成功。因此,我们的研究目标是从hiPSC衍生的心肌细胞(CMs)中构建无支架、3D打印的心脏组织移植物,并评估机械刺激是否会改善移植物成熟度。为了探索这一点,我们使用3D bioprinter从hiPSC衍生的CM细胞球体中制备了无支架心脏组织移植物。通过免疫荧光图像分析确定,与未受刺激的自由漂浮组织相比,这些移植物的静态机械拉伸显著增加了肌节长度。研究发现,拉伸的组织弹性模量降低,最大收缩力增加,形成的细胞外基质排列增加,这与功能成熟的组织移植物所预期的一样。此外,拉伸组织中心脏特异性基因转录物的表达上调,这与心脏样细胞特性的增强相一致。最后,对拉伸移植物中细胞外基质组织的分析表明,嵌入的心脏成纤维细胞改善了重构。综上所述,我们的研究结果表明,在3D打印的无支架组织移植物中,机械拉伸刺激hiPSC衍生的CMs,以形成成熟的心脏材料结构和细胞命运。我们的工作强调了机械调节作为开发临床应用的、无支架的人体心脏组织移植物的重要工程策略的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号