首页> 外文期刊>Journal of the Korean Physical Society >Calculation and Fabrication of a CH3NH3Pb(SCN)(x)I3-x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells
【24h】

Calculation and Fabrication of a CH3NH3Pb(SCN)(x)I3-x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells

机译:CH3NH3PB(SCN)(X)I3-X PEROVSKITE薄膜作为无吸收器的无吸收器的计算和制造,其在碳基空穴 - 传输层无钙钛矿太阳能电池中

获取原文
获取原文并翻译 | 示例
           

摘要

CH3NH3Pb(SCN)(x)I3-x films were prepared using a hot-casting method with five different Pb(SCN)(2)/PbI2 levels (x = 0, 0.25, 0.5, 1 and 2). Substitution of SCN- in the CH3NH3PbI3 structures induces a film color transformation from black to yellow. UV vis spectra of CH3NH3Pb(SCN)(x)I3-x films display an increased band gap from 1.59 eV (pure CH3NH3PbI3 film) to 2.37 eV (MAPb(SCN)(2)I films). Experimental XRD spectra of CH3NH3Pb(SCN)(x)I3-x films for increasing SCN- levels show a reduced angle of the (110) plane in the same trend as for the simulated tetragonal CH3NH3Pb(SCN)(x)I3-x structures. The calculated bandgap of simulated tetragonal CH3NH3Pb(SCN)(x)I3-x structures also increases with the SCN- concentration. Maximal efficiency, 4.56%, was gained from a carbon-based hole-transport layer (HTL)-free CH3NH3PbI3 (x = 0) perovskite solar cell. This is attributed to the low bandgap of CH3NH3PbI3 (1.59 eV). Although, the efficiency of the carbon-based HTL-free CH3NH3Pb(SCN)(x)I3-x solar cells decreases with increasing SCN- ratio, the excellent solar cell stability was obtained from carbon-based HTL-free CH3NH3Pb(SCN)(x)I3-x (x = 0.25, 0.5, 1 and 2) solar cells. This should be influenced by the presence of the hydrogen bonds between H and S and/or H and N in the CH3NH3Pb(SCN)(x)I3-x structures. The carbon-based HTL-free CH3NH3Pb(SCN)(0.5)I-2.5 solar cell delivers a promising efficiency of 3.07%, and its efficiency increases by 11.40% of its initial value after 30-day storage.
机译:CH3NH3Pb(SCN)(x)I3-x薄膜采用热铸法制备,具有五种不同的Pb(SCN)(2)/PbI2水平(x=0,0.25,0.5,1和2)。CH3NH3PbI3结构中SCN-的取代会导致薄膜颜色从黑色变为黄色。CH3NH3Pb(SCN)(x)I3-x薄膜的紫外可见光谱显示带隙从1.59 eV(纯CH3NH3PbI3薄膜)增加到2.37 eV(MAPb(SCN)(2)I薄膜)。CH3NH3Pb(SCN)(x)I3-x薄膜的实验XRD光谱显示,随着SCN-水平的增加,(110)平面的角度减小,其趋势与模拟的四方CH3NH3Pb(SCN)(x)I3-x结构相同。模拟的四方CH3NH3Pb(SCN)(x)I3-x结构的带隙也随着SCN-浓度的增加而增加。无碳空穴传输层(HTL)的CH3NH3PbI3(x=0)钙钛矿型太阳能电池的效率最高,为4.56%。这归因于CH3NH3PbI3(1.59 eV)的低带隙。尽管碳基无HTL CH3NH3Pb(SCN)(x)I3-x太阳能电池的效率随着SCN-比率的增加而降低,但碳基无HTL CH3NH3Pb(SCN)(x)I3-x(x=0.25,0.5,1和2)太阳能电池获得了优异的太阳能电池稳定性。这应受到CH3NH3Pb(SCN)(x)I3-x结构中H和S和/或H和N之间氢键存在的影响。无碳HTL CH3NH3Pb(SCN)(0.5)I-2.5太阳能电池的效率高达3.07%,储存30天后,其效率比初始值提高了11.40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号