...
首页> 外文期刊>Journal of nuclear engineering and radiation science >Development of Experimental Technology for Simulated Fuel-Assembly Heating to Address Core-Material-Relocation Behavior During Severe Accident
【24h】

Development of Experimental Technology for Simulated Fuel-Assembly Heating to Address Core-Material-Relocation Behavior During Severe Accident

机译:模拟燃料组装加热试验技术的发展,以解决严重事故期间核心材料 - 重组行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The authors are developing an experimental technology for simulating severe accident (SA) conditions using simulant fuel material (ZrO2) that would contribute, not only to Fukushima Daiichi (1 F) decommissioning, but also to enhance the safety of worldwide existing and future nuclear power plants through clarification of accident progression behavior. Nontransfer (NTR) type plasma, which has been in practical use with a large torch capacity as high as 2 MW, has the potential to heat subject materials to very high-temperatures without selecting the target to be heated. When simulating 1 F with SA code (Severe Core Damage Analysis Package (SCDAP), Methods for Estimation of Leakages and Consequences of Releases (MELCOR) and Modular Accident Analysis Program (MAAP)), the target of this core-material-melting and relocation (CMMR) experiment was to confirm that NTR plasma has a sufficient heating performance realizing large temperature gradients (>2000 K/m) expected under 1 F conditions. The authors selected NTR-type plasma-heating technology that has the advantage of continuous heating in addition to its high-temperature level. A prototype large-scale experiment (1m x 0.3 m dia.), called CMMR-0, was conducted in 2016, in which a large temperature gradient was realized and basic characteristics of a heated test assembly were studied. However, the maximum temperature was limited in this test by the instability of the plasma torch under low-oxygen concentrations. It was clarified through this test that an improvement in plasma-heating technology was necessary to heat the large-scale test assembly. The CMMR-1/-2 experiments were carried out in 2017 with a test assembly similar to CMMR-0, applying the improved technology (higher heating power and controlled oxygen concentration). In these two tests, heating history was different, resulting in similar physical responses with more pronounced material melting and relocation in the CMMR-2 experiment. The CMMR-2 experiment was selected from the perspective of establishing an experimental technology. The CMMR-2 experiment adopted a 30-min heating period, wherein the power was increased to a level where a large temperature gradient was expected at the lower part of the core under actual 1 F accident conditions. Most of the control blade and channel box migrated from the original position. After heating, the simulated fuel assembly was measured by X-ray-computed tomography (CT) technology and by electron probe micro-analyzer (EPMA). CT pictures and elemental mapping demonstrated its excellent performance with rather good precision. Based on these results, an excellent perspective, in terms of applicability of the NTR-type plasma-heating technology to the SA experimental study, was obtained.
机译:作者正在开发一种使用模拟燃料材料(ZrO2)模拟严重事故(SA)条件的实验技术,该技术不仅有助于福岛第一核电站(1F)的退役,而且有助于通过澄清事故发展行为来提高全球现有和未来核电站的安全性。非转移(NTR)型等离子体在实际使用中具有高达2 MW的大火炬容量,有可能在不选择加热目标的情况下将目标材料加热到非常高的温度。当使用SA代码(严重堆芯损伤分析包(SCDAP)、泄漏和释放后果估计方法(MELCOR)和模块化事故分析程序(MAAP))模拟1F时,该堆芯材料熔化和重新定位(CMMR)实验的目标是确认NTR等离子体具有足够的加热性能,实现1F条件下预期的大温度梯度(>2000 K/m)。作者选择了NTR型等离子体加热技术,该技术除了具有高温水平外,还具有连续加热的优点。原型大规模实验(直径1m x 0.3m),2016年进行了一项名为CMMR-0的试验,试验中实现了较大的温度梯度,并对加热试验组件的基本特性进行了研究。然而,由于等离子体炬在低氧浓度下的不稳定性,本试验中的最高温度受到限制。通过这项试验,可以清楚地看出,有必要改进等离子体加热技术,以加热大型试验组件。CMMR-1/-2试验于2017年进行,试验组件与CMMR-0相似,采用了改进的技术(更高的加热功率和受控的氧气浓度)。在这两个试验中,加热历史不同,导致相似的物理响应,在CMMR-2试验中,材料熔化和重新定位更为明显。CMMR-2实验是从建立实验技术的角度选择的。CMMR-2实验采用了30分钟的加热期,其中功率增加到一个水平,在实际1 F事故条件下,堆芯下部预计会出现较大的温度梯度。大多数控制刀片和通道盒从原始位置迁移。加热后,通过X射线计算机断层扫描(CT)技术和电子探针显微分析仪(EPMA)对模拟燃料组件进行测量。CT图像和元素标测显示其性能优异,精度较高。基于这些结果,就NTR型等离子体加热技术在SA实验研究中的适用性而言,获得了极好的前景。

著录项

  • 来源
  • 作者单位

    Japan Atom Energy Agcy 4002 Narita Oarai Ibaraki 3111393 Japan;

    Japan Atom Energy Agcy Int Res Inst Nucl Decommissioning 4002 Narita Oarai Ibaraki 3111393 Japan;

    Japan Atom Energy Agcy Int Res Inst Nucl Decommissioning 4002 Narita Oarai Ibaraki 3111393 Japan;

    Japan Atom Energy Agcy Int Res Inst Nucl Decommissioning 4002 Narita Oarai Ibaraki 3111393 Japan;

    Japan Atom Energy Agcy 4002 Narita Oarai Ibaraki 3111393 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号