首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Elastic and Thermoelastic Effects on Thermal Water Convection in Fracture Zones
【24h】

Elastic and Thermoelastic Effects on Thermal Water Convection in Fracture Zones

机译:弹性和热弹性对骨折区域热水对流的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Natural groundwater convection in fractures is an important mechanism of mass and heat transfer in the subsurface, locally altering temperature by several tens of degrees. The thermoelastic stresses resulting from these thermal anomalies induce thermal strains, which in turn alter the transmissivity (permeability times thickness) of the fracture and, therefore, the convective flow within. We investigate the effect of thermal strains on fracture convection patterns using a three-dimensional thermo-hydraulic-mechanical numerical model, implementing the Barton-Bandis relationship between fracture transmissivity and effective normal stress, which results in a downward-narrowing of the fractures. When thermoelasticity is not taken into account, convection forms narrow upflow zones and wide downflow zones. Decreasing fracture stiffness results in similar upflow/downflow patterns, but restricted to the shallow portions of the fracture, creating relatively minor thermal changes. When thermo-elasticity is included in the model, thermal strains induced by cool downflow zones create narrow high-transmissivity channels within the fracture, allowing convective flow to reach greater depths and significantly reducing the geothermal gradient near the fracture. Fracture stiffness is a key parameter in determining convection depth and thermal perturbation strength for a given set of host rock mechanical properties. When fracture stiffness is below some threshold, subsequent contractive thermoelastic strains were found to induce tensile failure of the host rock below the fracture, propagating and deepening the fracture into the host rock. This observation provides support to the previously proposed concept of convective downward migration.
机译:裂缝中的地下水自然对流是地下质量和热量传递的重要机制,局部温度会改变几十度。这些热异常产生的热弹性应力会引起热应变,进而改变裂缝的透过率(渗透率乘以厚度),从而改变裂缝内的对流。我们使用三维热工水力力学数值模型研究了热应变对裂缝对流模式的影响,实现了裂缝透过率和有效正应力之间的巴顿带关系,从而导致裂缝向下变窄。当不考虑热弹性时,对流形成狭窄的上流区和宽阔的下流区。裂缝刚度降低会导致类似的上流/下流模式,但仅限于裂缝的浅部,产生相对较小的热变化。当模型中包含热弹性时,冷却下流区引起的热应变在裂缝内形成狭窄的高透过率通道,使对流达到更大的深度,并显著降低裂缝附近的地温梯度。断裂刚度是确定对流深度和热扰动强度的关键参数,适用于给定的一组主岩力学性质。当断裂刚度低于某个阈值时,发现随后的收缩热弹性应变会导致断裂下方的主岩发生拉伸破坏,使断裂扩展并加深到主岩中。这一观察结果为之前提出的对流向下迁移的概念提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号